Lecture 1: Introduction - Peak Finding

COMS10007 - Algorithms

Dr. Christian Konrad

27.01.2020

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

GO China: STEM Futures

Join this 4-week summer school at the Beijing Institute of
Technology in July 2020.

Choose from 3 course options:

* Big Data Analysis

* Exploring Vehicle Design

* 5G Technology and Applications

Bursaries available for eligible students

Info session: Wednesday 5t February 2pm, Senate House 5.10
Application deadline: Wednesday 12th February

Find out more: bristol.ac.uk/summer-abroad

Algorithms?

Algorithms?
A procedure that solves a computational problem

Computational Problem?

@ Sort an array of n numbers

@ How often does “Juliet” appear in Shakespeare's “Romeo And
Juliet”?

How do we factorize a large number?
Shortest /fastest way to travel from Bristol to Glasgow?
How to execute a database query?

s it possible to partition the set {17,8,4,22,9,28,2} into two
sets s.t. their sums are equal? {8,9,28}, {2,4,17,22}

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

What we want and how we work

Efficiency

@ The faster the better: Runtime analysis

@ Use as little memory as possible: Space complexity

Mathematics

@ We will prove that algorithms run fast and use little memory
@ We will prove that algorithms are correct
@ Tools: Induction, algebra, sums, ..., rigorous arguments

Theoretical Computer Science

No implementations in this unit!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

What you get out of this unit

Goals
o First steps towards becoming an algorithms designer
@ Learn techniques that help you design & analyze algorithms

@ Understand a set of well-known algorithms

Systematic Approach to Problem/Puzzle Solving

@ Study a problem at hand, discover structure within problem,
exploit structure and design algorithms

@ Useful in all areas of Computer Science

@ Interview questions, Google, Facebook, Amazon, etc.

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

My Goals

o Get you excited about Algorithms

@ Shape new generation of Algorithm Designers at Bristol

Algorithms in Bristol
@ 1st year: Algorithms (Algorithms 1)
@ 2nd year: Data Structures and Algorithms (Algorithms 2)
@ 3rd year: Advanced Algorithms (Algorithms 3)
@ 4th year: in progress (Algorithms 4)

Projects, Theses, PhD students, Seminars

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Unit Structure

Teaching Units

@ Lectures: Mondays 2-3pm, Wednesdays 10-11am, PUGSLEY,
Instructor: Dr. Christian Konrad

@ Exercise classes/in-class tests: Tuesdays 1pm-2pm (A-L) and
2pm-3pm (M-Z), Room MVB 1.11

Assessment
e Exam: Counts 90%

@ One In-class test: Counts 10% (Extra time? let me know as
soon as possible)

@ You pass the unit if your final grade is at least 40%

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Teaching Staff and Office Hours

Teaching Staff
@ Unit Director: Christian Konrad

e TAs: Lidiya Binti Khalil, Emil Centiu, Igor Dolecki, Daniel
Jones, Joseph MacManus, Mutalib Mohammed, Yuhang
Ming, Kar Hor Yap

Optional Drop-in Session
@ Thursdays 10-11am, MVB 4.01
e OPTIONAL!

My Office Hours Wednesdays 1-2pm in MVB 3.06

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Christian Konrad

THOMAS H.CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

CLIFFORD STEIN

imB\"

THIRD EDITION

: Introduction - Peak Findi

How to Succeed in this Unit

How to succeed

Make sure you understand the material
Work on provided exercises!

Come to our drop in sessions

Work on provided exercises!!

Piazza for discussions and questions

Work on provided exercises!!!

Come to my office hours

Unit webpage
http://people.cs.bris.ac.uk/~konrad/courses/2019_
2020_C0MS10007/coms10007 .html

@ News, announcements

@ Download slides, exercises, etc.

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

http://people.cs.bris.ac.uk/~konrad/courses/2019_2020_COMS10007/coms10007.html
http://people.cs.bris.ac.uk/~konrad/courses/2019_2020_COMS10007/coms10007.html

Peak Finding

Let A= ag,a1,...,an—1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

(2o a1 2223 [235 [a1 [0]

Definition: (Peak)
Integer a; is a peak if adjacent integers are not larger than a;

Example:

'4]3]9]10]14]8]7]|2]2]2

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding

Let A= ag,a1,...,an—1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

(2o a1 2223 [235 [a1 [0]

Definition: (Peak)
Integer a; is a peak if adjacent integers are not larger than a;

Example:

'4]3]9]10]14]8]|7]|2]2]2

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

@ Input: An integer array of length n
@ Output: A position 0 < i < n— 1 such that a; is a peak

int peak(int %A, int len) {
if (A[0] >= A[1])
return 0;
if (A[len —1] >= A[len —2])
return len —1;

for(int i=1; i < len—1; i=i+1) {
if (A[i] >= A[i—1] && A[i] >= A[i+1])

return i;
}

return —1,

C++ code

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

@ Input: An integer array of length n
@ Output: A position 0 < i < n— 1 such that a; is a peak

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i —1] and A[i] > A[i + 1] then
return
return —1

Pseudo code

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has
a peak.]

0 1 2 3 4 5 6

(0] a1]22]as[a a5 |]

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has
a peak.]

0 1 2 3 4 5 6

W>ao a2|a3|a4|a5|aﬁ‘

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has

a peak.

’I>ao

> ap

O

3 4 5 6

SEIEE

Dr. Christian Konrad

Lecture 1: Introduction - Peak Finding

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has
a peak.]

a|>ap|>ai1|>ax|>az|>as|> as

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Every maximum is a peak. (Shorter and immediately convincing!)
O

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if A[n—1] > A[n— 2] then
return n—1
fori=1...n—2do
if A[{] > A[i — 1] and A[i] > A[i + 1] then
return |
return —1

How often do we look at the array elements? (worst case!)
o A[0] and A[n — 1]: twice Can we do better?!
o A[l] ... A[n—2]: 4 times
@ Overall: 242+ (n—2)-4=4(n-1)

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: FAST-PEAK-FINDING

@ if Ais of length 1 then return 0
@ if Ais of length 2 then compare A[0] and A[1] and
return position of larger element
@ if A[|n/2]] is a peak then return |n/2]
Q Otherwise, if A[|n/2] — 1] > A[|n/2]] then
return FAST-PEAK-FINDING(A[O, [n/2] — 1])

Q else
return [n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] +1,n—1])

Comments:
o FAST-PEAK-FINDING is recursive (it calls itself)

@ |x]| is the floor function ([x]: ceiling)

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36[33]31]30]25]21]20]15]7[4]10]22]

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36[33]31]30]25]21]20]15]7[4]10]22]

Check whether A[|n/2]] = A[|16/2]] = A[8] is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36[33]31]30]25]21]20]15]7[4]10]22]

If A[7] > A[8] then return FAST-PEAK-FINDING(A[O, 7])

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3]7]22]47]36]33]31]30]25]21]20]15]7[4]10]22]

Length of subarray is 8

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3]7]22]47]36]33]31]30]25]21]20]15]7[4]10]22]

Check whether A[|n/2]] = A[|8/2]] = A[4] is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3]7]22]47]36]33]31]30]25]21]20]15]7[4]10]22]

If A[3] > A[4] then return FAST-PEAK-FINDING(A[O, 3])

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 7|4]10]22]

Length of subarray is 4

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 74]10]22]

Check whether A[|n/2]] = A[|4/2]] = A[2] is a peak

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 74]10]22]

If A[1] > A[2] then return FAST-PEAK-FINDING(A[O, 1])

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 74]10]22]

Else return FAST-PEAK-FINDING(A[3]), which returns 3

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:

R(
R(

@ Solving the recurrence (see lecture on recurrences):

1) = R(2)=1
n) < R(|n/2])+1, forn>3.

R(n) R(|n/2])+ 1< R(n/2)+1=R(|n/4])+2

<
< R(n/4)+2=---<[logn] .

@ Hence, we look at most at 5[log n| array elements!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3
are clearly
correct

@ if Ais of length 1 then return 0
@ if Ais of length 2 then compare A[0] and A[1] and

return position of larger element
@ if A[|n/2]] is a peak then return |n/2]
© Otherwise, if A[|n/2] — 1] > A[|n/2]] then
return FAST-PEAK-FINDING(A[O, |n/2| — 1])
Q else
return [n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] 4+ 1, n — 1])

Why is step 4 correct? (step 5 is similar)
@ Need to prove: peak in A[0, |[n/2| —1] is a peak in A
o Critical case: [n/2] —1is a peak in A[0, | n/2] — 1]
e Condition in step 4 guarantees A[[n/2] — 1] > A[|n/2]] and
hence [n/2] — 1 is a peak in A as well (very important!) [

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Runtime Comparison

4(n—1)
a0
35
30
25
20
15

10

versus 5logn

F:alst—Peak-lFinding: I5 log(n)

Slow Peak Finding: 4(n-1) ——

3 4

5

6 7 8 9

number of accesses to the array

Dr. Christian Konrad

Lecture 1: Introduction - Peak Finding

10

Peak Finding: Runtime Comparison

4(n — 1) versus 5logn

400 T T T T

Fast—beak-Finlding: 5 IIog(n)
350 L Slow Peak Finding: 4(n-1)

300 |- .
250 |- |
200 |- .
150 - :
100 - :

50 - B

0 T | 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

number of accesses to the array

. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Runtime Comparison

4(n — 1) versus 5logn

4000 T T T T

I Fast—l;eak-Fintlding: 5 Ilog(n)
3500 - Slow Peak Finding: 4(n-1)

3000 - B
2500 - ,
2000 - B
1500 ,
1000 - B

500 -~ B

0))))
0 100 200 300 400 500 600 700 800 900 1000

number of accesses to the array

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

Peak Finding: Runtime Comparison

4(n — 1) versus 5logn

4000 T T T T T T T T
Fast-Peak-Finding: 5 log(n)
3500 - Slow Peak Finding: 4(n-1)

3000 - B
2500 - ,
2000 - B
1500 ,
1000 - B

500 -~ B

0))))
0 100 200 300 400 500 600 700 800 900 1000

number of accesses to the array

Conclusion: 5log n is so much better than 4(n — 1)!

Dr. Christian Konrad Lecture 1: Introduction - Peak Finding

