Lecture 1: Introduction - Peak Finding COMS10007 - Algorithms

Dr. Christian Konrad

27.01.2020

GO China: STEM Futures

Join this 4-week summer school at the Beijing Institute of Technology in July 2020.

Choose from 3 course options:

- Big Data Analysis
- Exploring Vehicle Design
- 5G Technology and Applications

Bursaries available for eligible students

Info session: Wednesday $5^{\text {th }}$ February 2pm, Senate House 5.10 Application deadline: Wednesday $\mathbf{1 2}^{\text {th }}$ February

Find out more: bristol.ac.uk/summer-abroad

Algorithms?

Algorithms?

A procedure that solves a computational problem

Computational Problem?

- Sort an array of n numbers
- How often does "Juliet" appear in Shakespeare's "Romeo And Juliet"?
- How do we factorize a large number?
- Shortest/fastest way to travel from Bristol to Glasgow?
- How to execute a database query?
- Is it possible to partition the set $\{17,8,4,22,9,28,2\}$ into two sets s.t. their sums are equal? $\{8,9,28\},\{2,4,17,22\}$

What we want and how we work

Efficiency

- The faster the better: Runtime analysis
- Use as little memory as possible: Space complexity

Mathematics

- We will prove that algorithms run fast and use little memory
- We will prove that algorithms are correct
- Tools: Induction, algebra, sums, ..., rigorous arguments

Theoretical Computer Science

No implementations in this unit!

What you get out of this unit

Goals

- First steps towards becoming an algorithms designer
- Learn techniques that help you design \& analyze algorithms
- Understand a set of well-known algorithms

Systematic Approach to Problem/Puzzle Solving

- Study a problem at hand, discover structure within problem, exploit structure and design algorithms
- Useful in all areas of Computer Science
- Interview questions, Google, Facebook, Amazon, etc.

My Goals

My Goals

- Get you excited about Algorithms
- Shape new generation of Algorithm Designers at Bristol

Algorithms in Bristol

- 1st year: Algorithms (Algorithms 1)
- 2nd year: Data Structures and Algorithms (Algorithms 2)
- 3rd year: Advanced Algorithms (Algorithms 3)
- 4th year: in progress (Algorithms 4)

Projects, Theses, PhD students, Seminars

Unit Structure

Teaching Units

- Lectures: Mondays 2-3pm, Wednesdays 10-11am, PUGSLEY, Instructor: Dr. Christian Konrad
- Exercise classes/in-class tests: Tuesdays 1 pm-2pm (A-L) and 2pm-3pm (M-Z), Room MVB 1.11

Assessment

- Exam: Counts 90\%
- One In-class test: Counts 10\% (Extra time? let me know as soon as possible)
- You pass the unit if your final grade is at least 40%

Teaching Staff and Office Hours

Teaching Staff

- Unit Director: Christian Konrad
- TAs: Lidiya Binti Khalil, Emil Centiu, Igor Dolecki, Daniel Jones, Joseph MacManus, Mutalib Mohammed, Yuhang Ming, Kar Hor Yap

Optional Drop-in Session

- Thursdays 10-11am, MVB 4.01
- OPTIONAL!

My Office Hours Wednesdays 1-2pm in MVB 3.06

Book

How to Succeed in this Unit

How to succeed

- Make sure you understand the material
- Work on provided exercises!
- Come to our drop in sessions
- Work on provided exercises!!
- Piazza for discussions and questions
- Work on provided exercises!!!
- Come to my office hours

Unit webpage

http://people.cs.bris.ac.uk/~konrad/courses/2019_ 2020_COMS10007/coms10007.html

- News, announcements
- Download slides, exercises, etc.

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:
(1) Input: An integer array of length n
(2) Output: A position $0 \leq i \leq n-1$ such that a_{i} is a peak

```
int peak(int *A, int len) {
    if(A[0] >= A[1])
        return 0;
    if(A[Ien-1] >= A[Ien-2])
        return len - 1;
    for(int i=1; i < len - 1; i=i+1) {
        if(A[i]>=A[i-1] && A[i] >= A[i+1])
        return i;
        }
    return -1;
}
```

$$
\text { C }++ \text { code }
$$

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:
(1) Input: An integer array of length n
(2) Output: A position $0 \leq i \leq n-1$ such that a_{i} is a peak

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
    return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

Pseudo code

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

0	1	2		3	4	
a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | $>a_{0}$ | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

0	1	2	3		4	5
a_{0}	$>a_{0}$	$>a_{1}$	a_{3}	a_{4}	a_{5}	a_{6}

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

0	1	2				
a_{0}	$>a_{0}$	$>a_{1}$	$>a_{2}$	$>a_{3}$	$>a_{4}$	$>a_{5}$

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Every maximum is a peak. (Shorter and immediately convincing!)

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice

Can we do better?!

- $A[1] \ldots A[n-2]: 4$ times
- Overall: $2+2+(n-2) \cdot 4=4(n-1)$

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: Fast-Peak-Finding
(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(3) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return Fast-Peak-Finding($A[0,\lfloor n / 2\rfloor-1])$
(5) else
return $\lfloor n / 2\rfloor+1+$
Fast-Peak-Finding $(A[\lfloor n / 2\rfloor+1, n-1])$

Comments:

- Fast-Peak-Finding is recursive (it calls itself)
- $\lfloor x\rfloor$ is the floor function ($\lceil x\rceil$: ceiling)

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Peak Finding: Example

Example:

1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Check whether $A[\lfloor n / 2\rfloor]=A[\lfloor 16 / 2\rfloor]=A[8]$ is a peak

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

If $A[7] \geq A[8]$ then return Fast-PEAK-Finding $(A[0,7])$

Peak Finding: Example

Example:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 7 | 22 | 47 | 36 | 33 | 31 | 30 | 25 | 21 | 20 | 15 | 7 | 4 | 10 | 22 |

Length of subarray is 8

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Check whether $A[\lfloor n / 2\rfloor]=A[\lfloor 8 / 2\rfloor]=A[4]$ is a peak

Peak Finding: Example

Example:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 7 | 22 | 47 | 36 | 33 | 31 | 30 | 25 | 21 | 20 | 15 | 7 | 4 | 10 | 22 |

If $A[3] \geq A[4]$ then return $\operatorname{Fast-PEAK-Finding}(A[0,3])$

Peak Finding: Example

Example:

1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 4

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Check whether $A[\lfloor n / 2\rfloor]=A[\lfloor 4 / 2\rfloor]=A[2]$ is a peak

Peak Finding: Example

Example:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 7 | 22 | 47 | 36 | 33 | 31 | 30 | 25 | 21 | 20 | 15 | 7 | 4 | 10 | 22 |

If $A[1] \geq A[2]$ then return FASt-PEAK-Finding $(A[0,1])$

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Else return Fast-Peak-Finding $(A[3])$, which returns 3

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
\begin{aligned}
& R(1)=R(2)=1 \\
& R(n) \leq R(\lfloor n / 2\rfloor)+1, \text { for } n \geq 3
\end{aligned}
$$

- Solving the recurrence (see lecture on recurrences):

$$
\begin{aligned}
R(n) & \leq R(\lfloor n / 2\rfloor)+1 \leq R(n / 2)+1=R(\lfloor n / 4\rfloor)+2 \\
& \leq R(n / 4)+2=\cdots \leq\lceil\log n\rceil .
\end{aligned}
$$

- Hence, we look at most at $5\lceil\log n\rceil$ array elements!

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct
(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(4) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return $\operatorname{FAST}-\mathrm{PEAK}-\operatorname{Finding}(A[0,\lfloor n / 2\rfloor-1])$
(5) else

$$
\begin{aligned}
& \text { return }\lfloor n / 2\rfloor+1+ \\
& \text { FAST-PEAK-FINDING(} A[\lfloor n / 2\rfloor+1, n-1])
\end{aligned}
$$

Why is step 4 correct? (step 5 is similar)

- Need to prove: peak in $A[0,\lfloor n / 2\rfloor-1]$ is a peak in A
- Critical case: $\lfloor n / 2\rfloor-1$ is a peak in $A[0,\lfloor n / 2\rfloor-1]$
- Condition in step 4 guarantees $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ and hence $\lfloor n / 2\rfloor-1$ is a peak in A as well (very important!)

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Conclusion: $5 \log n$ is so much better than $4(n-1)$!

