Lecture 1: Introduction - Peak Finding COMS10007 - Algorithms

Dr. Christian Konrad

27.01.2020

GO China: STEM Futures

Join this 4-week summer school at the Beijing Institute of Technology in July 2020.

Choose from 3 course options:

- **Big Data Analysis**
- **Exploring Vehicle Design**
- 5G Technology and Applications

Bursaries available for eligible students

Info session: Wednesday 5th February 2pm, Senate House 5.10

Application deadline: Wednesday 12th February

Find out more: bristol.ac.uk/summer-abroad

Algorithms?

Algorithms?

A procedure that solves a computational problem

Computational Problem?

- Sort an array of *n* numbers
- How often does "Juliet" appear in Shakespeare's "Romeo And Juliet"?
- How do we factorize a large number?
- Shortest/fastest way to travel from Bristol to Glasgow?
- How to execute a database query?
- Is it possible to partition the set $\{17, 8, 4, 22, 9, 28, 2\}$ into two sets s.t. their sums are equal? $\{8, 9, 28\}$, $\{2, 4, 17, 22\}$

What we want and how we work

Efficiency

- The faster the better: Runtime analysis
- Use as little memory as possible: Space complexity

Mathematics

- We will prove that algorithms run fast and use little memory
- We will prove that algorithms are correct
- Tools: Induction, algebra, sums, ..., rigorous arguments

Theoretical Computer Science

No implementations in this unit!

What you get out of this unit

Goals

- First steps towards becoming an algorithms designer
- Learn techniques that help you design & analyze algorithms
- Understand a set of well-known algorithms

Systematic Approach to Problem/Puzzle Solving

- Study a problem at hand, discover structure within problem, exploit structure and design algorithms
- Useful in all areas of Computer Science
- Interview questions, Google, Facebook, Amazon, etc.

My Goals

My Goals

- Get you excited about Algorithms
- Shape new generation of Algorithm Designers at Bristol

Algorithms in Bristol

- 1st year: Algorithms (Algorithms 1)
- 2nd year: Data Structures and Algorithms (Algorithms 2)
- 3rd year: Advanced Algorithms (Algorithms 3)
- 4th year: in progress (Algorithms 4)

Projects, Theses, PhD students, Seminars

Unit Structure

Teaching Units

- Lectures: Mondays 2-3pm, Wednesdays 10-11am, PUGSLEY, Instructor: Dr. Christian Konrad
- Exercise classes/in-class tests: Tuesdays 1pm-2pm (A-L) and 2pm-3pm (M-Z), Room MVB 1.11

Assessment

- Exam: Counts 90%
- One In-class test: Counts 10% (Extra time? let me know as soon as possible)
- You pass the unit if your final grade is at least 40%

Teaching Staff and Office Hours

Teaching Staff

- Unit Director: Christian Konrad
- TAs: Lidiya Binti Khalil, Emil Centiu, Igor Dolecki, Daniel Jones, Joseph MacManus, Mutalib Mohammed, Yuhang Ming, Kar Hor Yap

Optional Drop-in Session

- Thursdays 10-11am, MVB 4.01
- OPTIONAL!

My Office Hours Wednesdays 1-2pm in MVB 3.06

Book

How to Succeed in this Unit

How to succeed

- Make sure you understand the material
- Work on provided exercises!
- Come to our drop in sessions
- Work on provided exercises!!
- Piazza for discussions and questions
- Work on provided exercises!!!
- Come to my office hours

Unit webpage

http://people.cs.bris.ac.uk/~konrad/courses/2019_2020_COMS10007/coms10007.html

- News, announcements
- Download slides, exercises, etc.

Peak Finding

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Example:

Peak Finding

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Example:

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **1 Input:** An integer array of length *n*
- **Output:** A position $0 \le i \le n-1$ such that a_i is a peak

```
int peak(int *A, int len) {
    if(A[0] >= A[1])
        return 0:
    if(A[len-1] >= A[len-2])
        return len -1:
    for (int i=1; i < len -1; i=i+1) {
        if(A[i]) = A[i-1] \&\& A[i] >= A[i+1]
            return i:
    return -1;
```

C++ code

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **1 Input:** An integer array of length *n*
- **Output:** A position $0 \le i \le n-1$ such that a_i is a peak

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do
if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return -1
```

Pseudo code

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

0	1	2	3	4	5	6
<i>a</i> ₀	a_1	a ₂	<i>a</i> ₃	<i>a</i> ₄	a ₅	a ₆

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Every maximum is a peak. (Shorter and immediately convincing!)

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array A of length n
  if A[0] \geq A[1] then
    return 0
  if A[n-1] \ge A[n-2] then
    return n-1
  for i = 1 ... n - 2 do
    if A[i] \ge A[i-1] and A[i] \ge A[i+1] then
      return i
  return -1
```

How often do we look at the array elements? (worst case!)

- A[0] and A[n-1]: twice Can we do better?!
- A[1] ... A[n-2]: 4 times
- Overall: $2+2+(n-2)\cdot 4=4(n-1)$

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: FAST-PEAK-FINDING

- **1 if** *A* is of length 1 **then return** 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- **⊙** Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return Fast-Peak-Finding $(A[0, \lfloor n/2 \rfloor 1])$
- else return $\lfloor n/2 \rfloor + 1+$ FAST-PEAK-FINDING($A[\lfloor n/2 \rfloor + 1, n-1]$)

Comments:

- Fast-Peak-Finding is recursive (it calls itself)
- |x| is the floor function ([x]: ceiling)

Example:

Example:

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 16/2 \rfloor] = A[8]$ is a peak

Example:

If $A[7] \ge A[8]$ then **return** Fast-Peak-Finding(A[0,7])

Example:

								8							
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 8

Example:

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 8/2 \rfloor] = A[4]$ is a peak

Example:

If $A[3] \ge A[4]$ then **return** Fast-Peak-Finding(A[0,3])

Example:

			3												
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 4

Example:

Check whether $A[\lfloor n/2 \rfloor] = A[\lfloor 4/2 \rfloor] = A[2]$ is a peak

Example:

If $A[1] \ge A[2]$ then return Fast-Peak-Finding(A[0,1])

Example:

Else return Fast-Peak-Finding(A[3]), which returns 3

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

 $R(n) \le R(\lfloor n/2 \rfloor) + 1$, for $n \ge 3$.

• Solving the recurrence (see lecture on recurrences):

$$R(n) \leq R(\lfloor n/2 \rfloor) + 1 \leq R(n/2) + 1 = R(\lfloor n/4 \rfloor) + 2$$

$$\leq R(n/4) + 2 = \cdots \leq \lceil \log n \rceil.$$

• Hence, we look at most at $5\lceil \log n \rceil$ array elements!

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct

- 1 if A is of length 1 then return 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- ① Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return FAST-PEAK-FINDING $(A[0, \lfloor n/2 \rfloor 1])$
- else return $\lfloor n/2 \rfloor + 1 +$ Fast-Peak-Finding($A[\lfloor n/2 \rfloor + 1, n-1]$)

Why is step 4 correct? (step 5 is similar)

- Need to prove: peak in A[0, |n/2| 1] is a peak in A
- Critical case: $\lfloor n/2 \rfloor 1$ is a peak in $A[0, \lfloor n/2 \rfloor 1]$
- Condition in step 4 guarantees $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ and hence $\lfloor n/2 \rfloor 1$ is a peak in A as well (very important!)

Conclusion: $5 \log n$ is so much better than 4(n-1)!