Lecture 4: Linear Search, Binary Search, Proofs by Induction

COMS10007 - Algorithms

Dr. Christian Konrad

05.02.2020

Runtime of Algorithms

Consider an algorithm A for a specific problem Problem

Set of Potential Inputs

- Let $S(n)$ be the set of all potential inputs of length n for Problem
- For $I \in S(n)$, let $T(I)$ be the runtime of \mathbf{A} on input I

Worst-case Runtime: $\max _{I \in S(n)} T(I)$
Best-case Runtime: $\min _{I \in S(n)} T(I)$
Average-case Runtime: $\frac{1}{|S(n)|} \sum_{I \in S(n)} T(I)$

Linear Search

Linear Search:

- Input: An array A of n integers from the range $\{0,1,2, \ldots, k-1\}$, for some integer k, an integer $t \in\{0,1,2, \ldots, k-1\}$
- Output: 1 , if A contains $t, 0$ otherwise

Worst-case Runtime: $\Theta(n)$
E.g. on any input with
$A[i] \neq t$ for every $i \leq n-2$
and $A[n-1]=t$

$$
\text { for } i=0, \ldots, n-1 \text { do }
$$

if $A[i]=t$ then
return 1
return 0

Best-case Runtime: $O(1)$
On any input with $A[0]=t$
Average-case Runtime: (over all possible inputs of length n)

Average-case Analysis of Linear Search

Possible Inputs of Length n

$$
\begin{aligned}
S(n):= & \{\text { arrays } A \text { of length } n \text { with } A[i] \in\{0,1,2, \ldots, k-1\}, \\
& \text { for every } 0 \leq i \leq k-1\} \\
|S(n)|= & k^{n} .
\end{aligned}
$$

Simplification: Suppose that $k=2$. Then $|S(n)|=2^{n}$
Average-case Runtime (suppose that $t=1$)
$\mathrm{AVG}=\frac{1}{|S(n)|} \sum_{A \in S(n)}$ "left-most pos. i such that $A[i]=1 "+1$
$=2^{-n}\left(\left(\sum_{i=0}^{n-1} \mid\{A:\right.\right.$ left-most 1 is at pos. $\left.\left.i\} \mid \cdot(i+1)\right)+n\right)$.

Average-case Analysis of Linear Search (continued)

$$
\begin{aligned}
& 2^{-n}\left(\left(\sum_{i=0}^{n-1} \mid\{A: \text { left-most } 1 \text { is at pos. } i\} \mid \cdot(i+1)\right)+n\right) \\
& \underbrace{0000 \ldots 0}_{i \text { times }} 1 \underbrace{X X X \ldots X}_{n-i-1 \text { times }} \\
&= 2^{-n}\left(\left(\sum_{i=0}^{n-1} 2^{n-1-i} \cdot(i+1)\right)+n\right)=\left(\sum_{i=0}^{n-1} \frac{i+1}{2^{i+1}}\right)+n 2^{-n} \\
& \leq O(1)+1=O(1) .
\end{aligned}
$$

\rightarrow Average-case runtime of linear search with $k=2$ is $O(1)$
Question: Average-case runtime of linear search for $k>2$?

(Trick for Bounding Sums)

How to bound $\sum_{i=0}^{n-1} \frac{i}{2^{i}}$:

$$
S_{n-1}:=\sum_{i=0}^{n-1} \frac{i}{2^{i}} .
$$

Trick: Consider $\frac{1}{2} S_{n-1}$

$$
\begin{aligned}
S_{n-1} & =\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\cdots+\frac{n-1}{2^{n-1}} \\
\frac{1}{2} S_{n-1} & =\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\cdots+\frac{n-1}{2^{n}} \\
S_{n-1}-\frac{1}{2} S_{n-1} & =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}}-\frac{n-1}{2^{n}} \\
& =\left(\sum_{i=1}^{n-1} \frac{1}{2^{i}}\right)-\frac{n-1}{2^{n}}=\frac{\frac{1}{2^{n}}-\frac{1}{2}}{\frac{1}{2}-1}-\frac{n-1}{2^{n}}=O(1) .
\end{aligned}
$$

Binary Search

Binary Search:

- Input: A sorted array A of integers, an integer t
- Output: -1 if A does not contain t, otherwise a position i such that $A[i]=t$

Require: Sorted array A of length n, integer t
if $|A| \leq 2$ then
Check $A[0]$ and $A[1]$ and return answer
if $A[\lfloor n / 2\rfloor]=t$ then
return $\lfloor n / 2\rfloor$
else if $A[\lfloor n / 2\rfloor]>t$ then
return Binary-Search $(A[0, \ldots,\lfloor n / 2\rfloor-1])$
else
return $\lfloor n / 2\rfloor+1+\operatorname{BinARY-SEARCH}(A[\lfloor n / 2\rfloor+$ $1, n-1]$)

Algorithm Binary-Search

Worst-case Analysis of Binary Search

Worst-case Analysis

- Without the recursive calls, we spend $O(1)$ time in the function
- Worst-case runtime = $\underbrace{\text { " maximum number of recursive calls" }}_{r} \cdot O(1)$
- Observe that in iteration i the size of the array is at half the size than in iteration $i-1$
- We stop as soon as the size of the array is at most two
- Hence, we obtain the necessary and sufficient condition:

$$
\frac{n}{2^{r}} \leq 2
$$

Solving $\frac{n}{2^{r}} \leq 2$ yields $r \geq \log n-1$. Hence, $\lceil\log n-1\rceil \leq \log n$ iterations are enough.

Worst-case runtime of Binary Search: $O(\log n)$

Proofs by Induction and Loop Invariants

Proofs by Induction and Loop Invariants

Proofs by Induction

- Correctness of an algorithm often requires proving that a property holds throughout the algorithm (e.g. loop invariant)
- This is often done by induction
- We will first discuss the "proof by induction" principle
- We will use proofs by induction for proving loop invariants (soon) and for solving recurrences (later)

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\begin{aligned}
\sum_{i=0}^{n+1} x^{i} & =x^{n+1}+\sum_{i=0}^{n} x^{i}=x^{n+1}+\frac{x^{n+1}-1}{x-1} \\
& =\frac{x^{n+1}(x-1)+x^{n+1}-1}{x-1}=\frac{x^{n+2}-1}{x-1}
\end{aligned}
$$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} \cdot \checkmark
$$

- Induction hypothesis: Assume that P holds for some n
(Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds

$$
\sum_{i=0}^{n+1} i=n+1+\sum_{i=0}^{n} i=n+1+\frac{n(n+1)}{2}=\frac{(n+1)(n+2)}{2} \cdot \checkmark
$$

Induction without sums

Exercise Prove that $n^{3}-n$ is divisible by 3 , for $n \geq 2$

Proof.

- Base case. $(n=2) 2^{3}-2=6$, which is divisible by $3 \checkmark$
- Induction step. Assume statement holds for n. Then:

$$
\begin{aligned}
(n+1)^{3}-(n+1) & =n^{3}+3 n^{2}+3 n+1-n-1 \\
& =n^{3}-n+3 n^{2}+3 n \\
& =n^{3}-n+3\left(n^{2}+n\right)
\end{aligned}
$$

By the induction hypothesis $n^{3}-n$ is divisible by 3 . The term $3\left(n^{2}+n\right)$ is clearly divisible by 3 . The sum of two numbers that are divisible by 3 is also divisible by 3 .

Proof without Induction

Exercise Prove that $n^{3}-n$ is divisible by 3 , for $n \geq 2$

Proof.

$$
n^{3}-n=n\left(n^{2}-1\right)=n(n+1)(n-1)
$$

Observe that $n-1, n, n+1$ are three consecutive numbers larger equal to 1 (for $n \geq 2$). Hence, one of them is necessarily divisible by 3 .

