Lecture 4: Linear Search, Binary Search, Proofs by Induction COMS10007 - Algorithms

Dr. Christian Konrad

05.02.2020

Consider an algorithm $\boldsymbol{\mathsf{A}}$ for a specific problem $\operatorname{ProbLem}$

Set of Potential Inputs

- Let S(n) be the set of all potential inputs of length n for PROBLEM
- For $I \in S(n)$, let T(I) be the runtime of **A** on input I

Worst-case Runtime:
$$\max_{I \in S(n)} T(I)$$

Best-case Runtime: $\min_{I \in S(n)} T(I)$

Average-case Runtime:
$$\frac{1}{|S(n)|} \sum_{I \in S(n)} T(I)$$

Linear Search

Linear Search:

- Input: An array A of n integers from the range $\{0, 1, 2, \dots, k-1\}$, for some integer k, an integer $t \in \{0, 1, 2, \dots, k-1\}$
- Output: 1, if A contains t, 0 otherwise

Worst-case Runtime: $\Theta(n)$ E.g. on any input with $A[i] \neq t$ for every $i \leq n-2$ and A[n-1] = t Require: Array A, integer t for i = 0, ..., n - 1 do if A[i] = t then return 1 return 0

Best-case Runtime: O(1)On any input with A[0] = t

Average-case Runtime: (over all possible inputs of length n)

Average-case Analysis of Linear Search

Possible Inputs of Length n

$$\begin{array}{lll} S(n) &:= & \{ \text{arrays } A \text{ of length } n \text{ with } A[i] \in \{0, 1, 2, \dots, k-1\}, \\ & & \text{for every } 0 \leq i \leq k-1 \} \\ & |S(n)| &= & k^n \end{array}. \end{array}$$

Simplification: Suppose that k = 2. Then $|S(n)| = 2^n$

Average-case Runtime (suppose that t = 1)

$$\begin{aligned} \mathsf{AVG} &= \frac{1}{|S(n)|} \sum_{A \in S(n)} \text{ "left-most pos. } i \text{ such that } A[i] = 1 \text{ "} + 1 \\ &= 2^{-n} \left(\left(\sum_{i=0}^{n-1} |\{A : \text{ left-most 1 is at pos. } i\}| \cdot (i+1) \right) + n \right) \end{aligned}$$

Average-case Analysis of Linear Search (continued)

$$2^{-n} \left(\left(\sum_{i=0}^{n-1} |\{A : \text{ left-most 1 is at pos. } i\}| \cdot (i+1) \right) + n \right)$$

$$\underbrace{0 \ 0 \ 0 \ 0 \ \dots 0}_{i \text{ times}} 1 \underbrace{X \ X \ \dots \ X}_{n-i-1 \text{ times}}$$

$$= 2^{-n} \left(\left(\sum_{i=0}^{n-1} 2^{n-1-i} \cdot (i+1) \right) + n \right) = \left(\sum_{i=0}^{n-1} \frac{i+1}{2^{i+1}} \right) + n 2^{-n}$$

$$\leq O(1) + 1 = O(1) .$$

 \rightarrow Average-case runtime of linear search with k = 2 is O(1)**Question:** Average-case runtime of linear search for k > 2?

(Trick for Bounding Sums)

How to bound $\sum_{i=0}^{n-1} \frac{i}{2^i}$:

$$S_{n-1} := \sum_{i=0}^{n-1} \frac{i}{2^i} \; .$$

Trick: Consider $\frac{1}{2}S_{n-1}$

$$S_{n-1} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{n-1}{2^{n-1}}$$

$$\frac{1}{2}S_{n-1} = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots + \frac{n-1}{2^n}$$

$$S_{n-1} - \frac{1}{2}S_{n-1} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} - \frac{n-1}{2^n}$$

$$= \left(\sum_{i=1}^{n-1} \frac{1}{2^i}\right) - \frac{n-1}{2^n} = \frac{\frac{1}{2} - \frac{1}{2}}{\frac{1}{2} - 1} - \frac{n-1}{2^n} = O(1) .$$

Binary Search

Binary Search:

- Input: A sorted array A of integers, an integer t
- **Output:** -1 if A does not contain t, otherwise a position i such that A[i] = t

```
Require: Sorted array A of length n, integer t
  if |A| < 2 then
    Check A[0] and A[1] and return answer
  if A[|n/2|] = t then
    return |n/2|
  else if A[|n/2|] > t then
    return BINARY-SEARCH(A[0, \ldots, |n/2| - 1])
  else
    return |n/2| + 1 + \text{BINARY-SEARCH}(A[|n/2| +
    1, n-1])
```

Algorithm BINARY-SEARCH

Worst-case Analysis of Binary Search

Worst-case Analysis

- Without the recursive calls, we spend O(1) time in the function
- Worst-case runtime =

 $"maximum number of recursive calls" <math>\cdot O(1)$

- Observe that in iteration i the size of the array is at half the size than in iteration i 1
- We stop as soon as the size of the array is at most two
- Hence, we obtain the necessary and sufficient condition:

$$\frac{n}{2^r} \le 2$$

Solving $\frac{n}{2^r} \le 2$ yields $r \ge \log n - 1$. Hence, $\lceil \log n - 1 \rceil \le \log n$ iterations are enough.

Worst-case runtime of Binary Search: $O(\log n)$

Proofs by Induction and Loop Invariants

Proofs by Induction

- Correctness of an algorithm often requires proving that a property holds throughout the algorithm (e.g. loop invariant)
- This is often done by induction
- We will first discuss the "proof by induction" principle
- We will use proofs by induction for proving loop invariants (soon) and for solving recurrences (later)

Geometric Series

Geometric Series: Let *n* be an integer and let $x \neq 1$. Then:

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

Proof. (by induction on *n*)

- Base case. (n = 0) $\sum_{i=0}^{0} x^{i} = x^{0} = 1$ and $\frac{x^{n+1}-1}{x-1} = \frac{x-1}{x-1} = 1$. \checkmark
- *Induction Step.* Suppose the formula holds for *n*. We will prove that it also holds for n + 1:

$$\sum_{i=0}^{n+1} x^{i} = x^{n+1} + \sum_{i=0}^{n} x^{i} = x^{n+1} + \frac{x^{n+1} - 1}{x - 1}$$
$$= \frac{x^{n+1}(x - 1) + x^{n+1} - 1}{x - 1} = \frac{x^{n+2} - 1}{x - 1} \cdot \checkmark$$

Structure of a Proof by Induction

• Statement to prove: For example, for all $n \ge k P(n)$ is true

$$\forall n \ge 0 : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

• Base case: Prove that P(k) holds

$$n = 0$$
 : $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot (0+1)}{2} . \checkmark$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with k ≤ m ≤ n)
- Induction step: Prove that P(n+1) holds

$$\sum_{i=0}^{n+1} i = n+1 + \sum_{i=0}^{n} i = n+1 + \frac{n(n+1)}{2} = \frac{(n+1)(n+2)}{2} . \checkmark$$

Exercise Prove that $n^3 - n$ is divisible by 3, for $n \ge 2$

Proof.

- Base case. (n = 2) $2^3 2 = 6$, which is divisible by 3 \checkmark
- Induction step. Assume statement holds for n. Then:

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$$

= $n^3 - n + 3n^2 + 3n$
= $n^3 - n + 3(n^2 + n)$.

By the induction hypothesis $n^3 - n$ is divisible by 3. The term $3(n^2 + n)$ is clearly divisible by 3. The sum of two numbers that are divisible by 3 is also divisible by 3.

Exercise Prove that $n^3 - n$ is divisible by 3, for $n \ge 2$ **Proof.**

$$n^3 - n = n(n^2 - 1) = n(n + 1)(n - 1)$$
.

Observe that n - 1, n, n + 1 are three consecutive numbers larger equal to 1 (for $n \ge 2$). Hence, one of them is necessarily divisible by 3.