
Lecture 4: Linear Search, Binary Search, Proofs by
Induction

COMS10007 - Algorithms

Dr. Christian Konrad

05.02.2020

Dr. Christian Konrad Lecture 4 1 / 14

Runtime of Algorithms

Consider an algorithm A for a specific problem Problem

Set of Potential Inputs

Let S(n) be the set of all potential inputs of length n for
Problem

For I ∈ S(n), let T (I) be the runtime of A on input I

Worst-case Runtime: max
I∈S(n)

T (I)

Best-case Runtime: min
I∈S(n)

T (I)

Average-case Runtime:
1

|S(n)|
∑

I∈S(n)

T (I)

Dr. Christian Konrad Lecture 4 2 / 14

Linear Search

Linear Search:

Input: An array A of n integers from the range
{0, 1, 2, . . . , k − 1}, for some integer k , an integer
t ∈ {0, 1, 2, . . . , k − 1}
Output: 1, if A contains t, 0 otherwise

Require: Array A, integer t
for i = 0, . . . , n − 1 do

if A[i] = t then
return 1

return 0

Worst-case Runtime: Θ(n)
E.g. on any input with
A[i] 6= t for every i ≤ n − 2
and A[n − 1] = t

Best-case Runtime: O(1)
On any input with A[0] = t

Average-case Runtime: (over all possible inputs of length n)

Dr. Christian Konrad Lecture 4 3 / 14

Average-case Analysis of Linear Search

Possible Inputs of Length n

S(n) := {arrays A of length n with A[i] ∈ {0, 1, 2, . . . , k − 1},
for every 0 ≤ i ≤ k − 1}

|S(n)| = kn .

Simplification: Suppose that k = 2. Then |S(n)| = 2n

Average-case Runtime (suppose that t = 1)

AVG =
1

|S(n)|
∑

A∈S(n)

“left-most pos. i such that A[i] = 1“ + 1

= 2−n

((
n−1∑
i=0

|{A : left-most 1 is at pos. i}| · (i + 1)

)
+ n

)
.

Dr. Christian Konrad Lecture 4 4 / 14

Average-case Analysis of Linear Search (continued)

2−n

((
n−1∑
i=0

|{A : left-most 1 is at pos. i}| · (i + 1)

)
+ n

)

0 0 0 0 . . . 0︸ ︷︷ ︸
i times

1 X X X . . . X︸ ︷︷ ︸
n−i−1 times

= 2−n

((
n−1∑
i=0

2n−1−i · (i + 1)

)
+ n

)
=

(
n−1∑
i=0

i + 1

2i+1

)
+ n2−n

≤ O(1) + 1 = O(1) .

→ Average-case runtime of linear search with k = 2 is O(1)

Question: Average-case runtime of linear search for k > 2?

Dr. Christian Konrad Lecture 4 5 / 14

(Trick for Bounding Sums)

How to bound
∑n−1

i=0
i
2i

:

Sn−1 :=
n−1∑
i=0

i

2i
.

Trick: Consider 1
2Sn−1

Sn−1 =
1

2
+

2

4
+

3

8
+

4

16
+ · · ·+ n − 1

2n−1

1

2
Sn−1 =

1

4
+

2

8
+

3

16
+ · · ·+ n − 1

2n

Sn−1 −
1

2
Sn−1 =

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n−1
− n − 1

2n

=

(
n−1∑
i=1

1

2i

)
− n − 1

2n
=

1
2n −

1
2

1
2 − 1

− n − 1

2n
= O(1) .

Dr. Christian Konrad Lecture 4 6 / 14

Binary Search

Binary Search:

Input: A sorted array A of integers, an integer t

Output: −1 if A does not contain t, otherwise a position i
such that A[i] = t

Require: Sorted array A of length n, integer t
if |A| ≤ 2 then

Check A[0] and A[1] and return answer
if A[bn/2c] = t then

return bn/2c
else if A[bn/2c] > t then

return Binary-Search(A[0, . . . , bn/2c − 1])
else

return bn/2c + 1 + Binary-Search(A[bn/2c +
1, n − 1])

Algorithm Binary-Search

Dr. Christian Konrad Lecture 4 7 / 14

Worst-case Analysis of Binary Search

Worst-case Analysis

Without the recursive calls, we spend O(1) time in the
function

Worst-case runtime =
”maximum number of recursive calls“︸ ︷︷ ︸

r

·O(1)

Observe that in iteration i the size of the array is at half the
size than in iteration i − 1

We stop as soon as the size of the array is at most two

Hence, we obtain the necessary and sufficient condition:

n

2r
≤ 2

Solving n
2r ≤ 2 yields r ≥ log n − 1. Hence, dlog n − 1e ≤ log n

iterations are enough.

Worst-case runtime of Binary Search: O(log n)
Dr. Christian Konrad Lecture 4 8 / 14

Proofs by Induction and
Loop Invariants

Dr. Christian Konrad Lecture 4 9 / 14

Proofs by Induction and Loop Invariants

Proofs by Induction

Correctness of an algorithm often requires proving that a
property holds throughout the algorithm (e.g. loop invariant)

This is often done by induction

We will first discuss the “proof by induction” principle

We will use proofs by induction for proving loop invariants
(soon) and for solving recurrences (later)

Dr. Christian Konrad Lecture 4 10 / 14

Geometric Series

Geometric Series: Let n be an integer and let x 6= 1. Then:

n∑
i=0

x i =
xn+1 − 1

x − 1
.

Proof. (by induction on n)

Base case. (n = 0)∑0
i=0 x

i = x0 = 1 and xn+1−1
x−1 = x−1

x−1 = 1. X

Induction Step. Suppose the formula holds for n. We will
prove that it also holds for n + 1:

n+1∑
i=0

x i = xn+1 +
n∑

i=0

x i = xn+1 +
xn+1 − 1

x − 1

=
xn+1(x − 1) + xn+1 − 1

x − 1
=

xn+2 − 1

x − 1
. X

Dr. Christian Konrad Lecture 4 11 / 14

Structure of a Proof by Induction

Statement to prove: For example, for all n ≥ k P(n) is true

∀n ≥ 0 :
n∑

i=0

i =
n(n + 1)

2
.

Base case: Prove that P(k) holds

n = 0 :
0∑

i=0

i = 0 =
0 · (0 + 1)

2
.X

Induction hypothesis: Assume that P holds for some n
(Strong induction: for all m with k ≤ m ≤ n)

Induction step: Prove that P(n + 1) holds

n+1∑
i=0

i = n + 1 +
n∑

i=0

i = n + 1 +
n(n + 1)

2
=

(n + 1)(n + 2)

2
.X

Dr. Christian Konrad Lecture 4 12 / 14

Induction without sums

Exercise Prove that n3 − n is divisible by 3, for n ≥ 2

Proof.

Base case. (n = 2) 23 − 2 = 6, which is divisible by 3 X

Induction step. Assume statement holds for n. Then:

(n + 1)3 − (n + 1) = n3 + 3n2 + 3n + 1−n − 1

= n3 − n + 3n2 + 3n

= n3 − n + 3(n2 + n) .

By the induction hypothesis n3 − n is divisible by 3. The term
3(n2 + n) is clearly divisible by 3. The sum of two numbers
that are divisible by 3 is also divisible by 3.

Dr. Christian Konrad Lecture 4 13 / 14

Proof without Induction

Exercise Prove that n3 − n is divisible by 3, for n ≥ 2

Proof.

n3 − n = n(n2 − 1) = n(n + 1)(n − 1) .

Observe that n − 1, n, n + 1 are three consecutive numbers larger
equal to 1 (for n ≥ 2). Hence, one of them is necessarily divisible
by 3.

Dr. Christian Konrad Lecture 4 14 / 14

