
Lectures 8 and 9: Trees and Heap Sort
COMS10007 - Algorithms

Dr. Christian Konrad

19.02.2020

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 1 / 20

In-class Test

In-class Test:

When? March 10th, 1pm (during exercise classes)

Where? Ivy Gate G.01 and Ivy Gate 1.01, two groups

Your timetables have been updated accordingly!

How long? 50 mins

What should I expect? All lectures and exercise sheets are
relevant (Peak Finding is excluded). Example in-class test
uploaded to unit webpage

You are allowed extra time? Get in touch with me (email)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 2 / 20

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 3 / 20

Trees

Definition: A tree T = (V ,E) of size n is a tuple consisting of

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , en−1}

with |V | = n and |E | = n − 1 with ei = {vj , vk} for some j 6= k
s.t. for every pair of vertices vi , vj (i 6= j), there is a path from
vi to vj . V are the nodes/vertices and E are the edges of T .

X X 7

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 4 / 20

Rooted Trees

Definition: (rooted tree) A rooted tree is a triple T = (v ,V ,E)
such that T = (V ,E) is a tree and v ∈ V is a designed node
that we call the root of T .

Definition: (leaf, internal node) A leaf in a tree is a node with
exactly one incident edge. A node that is not a leaf is called an
internal node.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 5 / 20

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbors except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 6 / 20

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 7 / 20

Binary Trees

Definition: (k-ary tree) A (rooted) tree is k-ary if every node
has at most k children. If k = 2 then the tree is called binary.
A k ary tree is

full if every internal node has exactly k children,

complete if all levels except possibily the last is entirely
filled (and last level is filled from left to right),

perfect if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 8 / 20

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

The number of nodes in a perfect k-ary tree of height i − 1 is

i−1∑
j=0

k j =
k i − 1

k − 1
.

In other words, a perfect k-ary tree on n nodes has height:

n =
k i − 1

k − 1

k i = n(k − 1) + 1

i = logk(n(k − 1) + 1) = O(logk n) .

Similarly, a complete k-ary tree has height O(logk n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore
interested in using complete/perfect trees.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 9 / 20

Priority Queues

Priority Queue:
Data structure that allows the following operations:

Build(.): Create data structure given a set of data items

Extract-Max(.): Remove the maximum element from the data
structure

others...

Sorting using a Priority Queue

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 10 / 20

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : bi/2c
Left/Right Child of i : 2i and 2i + 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 11 / 20

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 12 / 20

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 12 / 20

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 12 / 20

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 12 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 13 / 20

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() at node with key c

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 14 / 20

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom”

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has height i − 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 15 / 20

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom”

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has height i − 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 15 / 20

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom”

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has height i − 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 15 / 20

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

i∑
j=1

2i−j︸︷︷︸
nodes in level i − j + 1

· j︸︷︷︸
depth of subtree

i∑
j=1

2i−j · j = 2i ·
i∑

j=1

j

2j
= O(2i) = O(n′) = O(n) .

We proved
∑i

j=1
j
2j

= O(1) in Lecture 4!

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 16 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

The Complete Algorithm

Putting Everything Together

1 Build-heap() O(n)
2 Repeat n times:

1 Swap root with last element O(1)
2 Decrease size of heap by 1 O(1)
3 Heapify(root) O(log n)

Runtime: O(n log n)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 17 / 20

Heapsort is Not Stable

Example:

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 18 / 20

Heapsort is Not Stable

Example:

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 18 / 20

Heapsort is Not Stable

Example:

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 18 / 20

Heapsort is Not Stable

Example:

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 18 / 20

Heapsort is Not Stable

Example:

1 Build-heap()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 18 / 20

Are all Functions Asymptotically Comparable?

Let f , g be positive functions. Is the following statement true?

Claim. f (n) /∈ O(g(n))⇒ g(n) ∈ O(f (n)) . false!

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 19 / 20

Are all Functions Asymptotically Comparable? (2)

f (n) = n and g(n) = n1+0.1 sin(n)

Not all Functions are asymptotically comparable!

Observe that n1+0.1 sin(n) is infinitely often equal to n1.1 and
infinintely often equal to n0.9

Therefore, neither f (n) ∈ O(g(n)) nor g(n) ∈ O(f (n))

Another Example:

f (n) = n

g(n) = n2 if n even and g(n) =
√

n if n odd

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 20 / 20

