Lectures 8 and 9: Trees and Heap Sort

COMS10007 - Algorithms

Dr. Christian Konrad

19.02.2020

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

In-class Test

In-class Test:
e When? March 10th, 1pm (during exercise classes)
@ Where? lvy Gate G.01 and lvy Gate 1.01, two groups

Your timetables have been updated accordingly!

How long? 50 mins

What should | expect? All lectures and exercise sheets are
relevant (Peak Finding is excluded). Example in-class test
uploaded to unit webpage

You are allowed extra time? Get in touch with me (email)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst, in place, stable

e Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Data Structures

o Data storage format that allows for efficient access and
modification

@ Building block of many efficient algorithms

@ For example, an array is a data structure

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 3/ 20

Trees

Definition: A tree T = (V, E) of size n is a tuple consisting of

V = {Vl,VQ,...,V,,} and E = {el,eg,...,e,,,l}
with |V| = nand |E| = n — 1 with ¢ = {v;, v} for some j # k

s.t. for every pair of vertices v;, v; (i # j), there is a path from
vi to vj. V are the nodes/vertices and E are the edges of T.

I o

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 4/ 20

Definition: (rooted tree) A rooted tree is a triple T = (v, V, E)
such that T = (V,E) is a tree and v € V is a designed node
that we call the root of T.

Definition: (leaf, internal node) A leaf in a tree is a node with
exactly one incident edge. A node that is not a leaf is called an
internal node.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 5/ 20

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest parent(v)

node on a path from v to the root. v
The root does not have a parent.

The children of a node v are v's children(v)
neighbors except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v. Since every edge is incident to two vertices we have

> deg(v)=2-|E|=2(n—1).
veV

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 6/ 20

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L C V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| < 1. Then:

Sodeg(v) = Yodeg(v)+ 3 deg(v)

vev vel veV\L
> |1+ (V=) -2=2|V[-|L|>2n -1,

a contradiction to the fact that) .\ deg(v) =2(n —1) in every
tree. L]

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Definition: (k-ary tree) A (rooted) tree is k-ary if every node

has at most k children. If kK = 2 then the tree is called binary.
A k ary tree is

o full if every internal node has exactly k children,

e complete if all levels except possibily the last is entirely
filled (and last level is filled from left to right),

o perfect if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees
@ The number of nodes in a perfect k-ary tree of height i — 1 is

i—1 i
Ejkf':k -1
: k—1
Jj=0

@ In other words, a perfect k-ary tree on n nodes has height:

k-1
Tk
k' = n(k—1)+1
i = log,(n(k—1)+1) = O(log, n) .

e Similarly, a complete k-ary tree has height O(log, n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore

interested in using complete/perfect trees.

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort 9/ 20

Priority Queues

Priority Queue:
Data structure that allows the following operations:

@ Build(.): Create data structure given a set of data items

e Extract-Max(.): Remove the maximum element from the data
structure

@ others...

Sorting using a Priority Queue

extract-Max

|14|3|9|8|16[2|1|7|11|12|5‘

max Algorithm

Data Structure

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11

|14|3|9|8|16|2|1|7|11|12|5|

Easy Navigation:
e Parent of i: [i/2]
o Left/Right Child of /: 2/ and 2/ + 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property — Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heap Property

The Heap Property

Key of nodes larger than keys of their children

o

Heap Property — Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heap Property

The Heap Property

Key of nodes larger than keys of their children

e

Heap Property — Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heap Property

The Heap Property

Key of nodes larger than keys of their children

o

Heap Property — Maximum at root
Important for Extract-Max(.)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

(1)
OWNO.
O OION0,

'@6

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

(1)
OO,
01010
00‘

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

(29)
4o
OENOION0
9101010

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering

@ If node does not fulfill Heap Property: Heapify()

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci,»}
@ If ¢ > p then exchange nodes with keys p and ¢

o call Heapify() at node with key ¢

Runtime:
@ Exchanging nodes requires time O(1)
@ The number of recursive calls is bounded by the height of the
tree, i.e., O(logn)
e Runtime of Heapify: O(logn).

Constructing a Heap: Build(.) Runtime O(nlog n)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
@ Heapify(x): O(depth of subtree rooted at x) = O(log n)

o Observe: Most nodes close to the “bottom’

Analysis:
@ Let / be the largest integer @

suchthat n :=2' —1and n’ < n e o

@ There are at most n’ internal

nodes (candidates for Heapify()) e @ ° °

@ These nodes are contained in a

perfect binary tree 0 @ @ e

@ This tree has height i — 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
@ Heapify(x): O(depth of subtree rooted at x) = O(log n)

o Observe: Most nodes close to the “bottom’

Analysis:
@ Let / be the largest integer @

suchthat n :=2' —1and n’ < n e o

@ There are at most n’ internal

nodes (candidates for Heapify()) e @ ° °

@ These nodes are contained in a

perfect binary tree 0 @ @ e

@ This tree has height i — 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
@ Heapify(x): O(depth of subtree rooted at x) = O(log n)

o Observe: Most nodes close to the “bottom’

Analysis:
@ Let / be the largest integer @

suchthat n :=2' —1and n’ < n e o

@ There are at most n’ internal

nodes (candidates for Heapify()) e @ ° °

@ These nodes are contained in a

perfect binary tree 0 @ @ e

@ This tree has height i — 1

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply e o

with the depth of their subtrees:
& GO
| O@W®@E
1
D N

. . . . v
/=1 nodes in level i — j+1 depth of subtree
i i
S oo j=0 2—1—0(2) O(n") = O(n) .

Jj=1 Jj=1

We proved Z _19 = O(1) in Lecture 4!

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|14|3|9|8|16|2|l|7|11|12|5| @

@ Build-heap() (2 ()
@ Repeat n times: e @ ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o ° e e

© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|16|l4|9|11|12|2|l|7|8|3|5| @
@ Build-heap() (1 (2)
@ Repeat n times: e e ° Q
@ Swap root with last element
@ Decrease size of heap by 1 o e e e

© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|5|l4|9|11|12|2|l|7|8|3|16| e

@ Build-heap() () ()
@ Repeat n times: e e ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o e e @

© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|5|l4|9|11|12|2|l|7|8|3|16| e

@ Build-heap() () ()
@ Repeat n times: e e ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o e e

© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|14|12|9|11|5|2|l|7|8|3|16| @

@ Build-heap() O ()
@ Repeat n times: e e ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o e e

© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|3|12|9|11|5|2|l|7|8|14|16| °

@ Build-heap() O ()
@ Repeat n times: e e ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o e @

© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|3|12|9|11|5|2|l|7|8|14|16| °

@ Build-heap() O ()
@ Repeat n times: e e ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o e
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|12|ll|9|8|5|2|l|7|3|14|16| @

@ Build-heap() (1 ()
@ Repeat n times: e e ° Q

@ Swap root with last element
@ Decrease size of heap by 1 o e
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|3|11|9|8|5|2|1|7|12|14|16|

@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|3|ll|9|8|5|2|l|7|12|14|16| °

@ Build-heap() (1 ()
@ Repeat n times: e e ° Q

@ Swap root with last element o
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

|3|11|9|8|5|2|1|7|12|14|16|

@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

Gl o] [n]e]e]s]

@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

The Complete Algorithm

Putting Everything Together

Gl o] [n]e]e]s]

@ Build-heap() O(n)
@ Repeat n times:

@ Swap root with last element O(1)
@ Decrease size of heap by 1 O(1)
© Heapify(root) O(log n)

Runtime: O(nlogn)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heapsort is Not Stable

Example:
@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heapsort is Not Stable

Example:
@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heapsort is Not Stable

Example:
@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heapsort is Not Stable

Example:
@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Heapsort is Not Stable

Example:
@ Build-heap()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Are all Functions Asymptotically Comparable?

Let f, g be positive functions. Is the following statement true?

Claim. f(n) ¢ O(g(n)) = g(n) € O(f(n)) . false!

160 T T T T T

n :
n~(0.1*sin(n)+1) —
140 |- s

120
100
80
60
40

20

10 20 30 40 50 60 70 80 90 100

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

Are all Functions Asymptotically Comparable? (2)

f(n) = n and g(n) = p'*01sin(n)
Not all Functions are asymptotically comparable!

1

o Observe that n!t0-1sin(7) js infinitely often equal to n*! and

infinintely often equal to n%°
o Therefore, neither f(n) € O(g(n)) nor g(n) € O(f(n))

Another Example:

e g(n) = n?if neven and g(n) = v/n if n odd

Dr. Christian Konrad Lectures 8 and 9: Trees and Heap Sort

