Lectures 8 and 9: Trees and Heap Sort COMS10007 - Algorithms

Dr. Christian Konrad

19.02.2020

In-class Test:

- When? March 10th, 1pm (during exercise classes)
- Where? Ivy Gate G.01 and Ivy Gate 1.01, two groups

Your timetables have been updated accordingly!

- How long? 50 mins
- What should I expect? All lectures and exercise sheets are relevant (Peak Finding is excluded). Example in-class test uploaded to unit webpage
- You are allowed extra time? Get in touch with me (email)

Sorting Algorithms seen so far

Sorting Algorithms seen so far

- Insertion-Sort: $O(n^2)$ in worst, in place, stable
- Merge-Sort: $O(n \log n)$ in worst case, NOT in place, stable

Heap Sort (best of the two)

- $O(n \log n)$ in worst case, in place, **NOT** stable
- Uses a *heap data structure* (a heap is special tree)

Data Structures

- Data storage format that allows for efficient access and modification
- Building block of many efficient algorithms
- For example, an array is a data structure

Definition: A tree
$$T = (V, E)$$
 of size *n* is a tuple consisting of
 $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_{n-1}\}$
with $|V| = n$ and $|E| = n - 1$ with $e_i = \{v_j, v_k\}$ for some $j \neq k$
s.t. for every pair of vertices v_i, v_j $(i \neq j)$, there is a path from
 v_i to v_j . *V* are the nodes/vertices and *E* are the edges of *T*.

Definitions A true T (1/ Γ) of size n is a true la consisting of

Definition: (rooted tree) A *rooted* tree is a triple T = (v, V, E) such that T = (V, E) is a tree and $v \in V$ is a designed node that we call the *root* of T.

Definition: (leaf, internal node) A *leaf* in a tree is a node with exactly one incident edge. A node that is not a leaf is called an *internal node*.

Further Definitions:

- The *parent* of a node *v* is the closest node on a path from *v* to the root. The root does not have a parent.
- The *children* of a node *v* are *v*'s neighbors except its parent.

- The *height* of a tree is the length of a longest root-to-leaf path.
- The *degree* deg(v) of a node v is the number of incident edges to v. Since every edge is incident to two vertices we have

$$\sum_{v\in V} \deg(v) = 2 \cdot |E| = 2(n-1) .$$

• The *level* of a vertex v is the length of the unique path from the root to v plus 1.

Property: Every tree has at least 2 leaves

Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$\begin{split} \sum_{v \in V} \deg(v) &= \sum_{v \in L} \deg(v) + \sum_{v \in V \setminus L} \deg(v) \\ &\geq |L| \cdot 1 + (|V| - |L|) \cdot 2 = 2|V| - |L| \geq 2n - 1 \ , \end{split}$$

a contradiction to the fact that $\sum_{v \in V} \deg(v) = 2(n-1)$ in every tree.

Binary Trees

Definition: (*k*-ary tree) A (rooted) tree is *k*-ary if every node has at most k children. If k = 2 then the tree is called binary. A k ary tree is

- *full* if every internal node has exactly k children,
- *complete* if all levels except possibily the last is entirely filled (and last level is filled from left to right),
- perfect if all levels are entirely filled.

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

• The number of nodes in a perfect k-ary tree of height i-1 is

$$\sum_{j=0}^{i-1} k^j = \frac{k^i - 1}{k - 1}$$

• In other words, a perfect k-ary tree on n nodes has height:

$$n = \frac{k^{i} - 1}{k - 1}$$

$$k^{i} = n(k - 1) + 1$$

$$i = \log_{k}(n(k - 1) + 1) = O(\log_{k} n) .$$

• Similarly, a complete k-ary tree has height $O(\log_k n)$.

Remark: The runtime of many algorithms that use tree data structures depends on the height of these trees. We are therefore interested in using complete/perfect trees.

Priority Queue:

Data structure that allows the following operations:

- Build(.): Create data structure given a set of data items
- Extract-Max(.): Remove the maximum element from the data structure
- others...

Sorting using a Priority Queue

Interpretation of an Array as a Complete Binary Tree

- Parent of $i: \lfloor i/2 \rfloor$
- Left/Right Child of i: 2i and 2i + 1

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root Important for Extract-Max(.)

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root Important for Extract-Max(.)

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at root Important for Extract-Max(.)

Key of nodes larger than keys of their children

Heap Property \rightarrow Maximum at roo Important for Extract-Max(.)

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Constructing a Heap: Build(.)

- Traverse tree with regards to right-to-left array ordering
- If node does not fulfill Heap Property: Heapify()

Heapify()

Let p be the key of a node and let c_1, c_2 be the keys of its children

- Let $c = \max\{c_1, c_2\}$
- If c > p then exchange nodes with keys p and c
- call **Heapify()** at node with key c

Runtime:

- Exchanging nodes requires time O(1)
- The number of recursive calls is bounded by the height of the tree, i.e., $O(\log n)$
- Runtime of **Heapify**: $O(\log n)$.

Constructing a Heap: Build(.) Runtime $O(n \log n)$

More Precise Analysis of the Heap Construction Step

- Heapify(x): O(depth of subtree rooted at x) = O(log n)
- Observe: Most nodes close to the "bottom"

Analysis:

- Let i be the largest integer such that n' := 2ⁱ - 1 and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1

More Precise Analysis of the Heap Construction Step

- Heapify(x): O(depth of subtree rooted at x) = O(log n)
- Observe: Most nodes close to the "bottom"

Analysis:

- Let i be the largest integer such that n' := 2ⁱ - 1 and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1

More Precise Analysis of the Heap Construction Step

- Heapify(x): O(depth of subtree rooted at x) = O(log n)
- Observe: Most nodes close to the "bottom"

Analysis:

- Let i be the largest integer such that n' := 2ⁱ - 1 and n' < n
- There are at most n' internal nodes (candidates for Heapify())
- These nodes are contained in a perfect binary tree
- This tree has height i-1

Analysis

We sum over all relevant levels, count the number of nodes per level, and multiply with the depth of their subtrees:

 $\sum_{j=1 \text{ nodes in level } i-j+1} \frac{2^{i-j}}{i-j+1} \cdot \underbrace{j}_{\text{depth of subtree}}$

$$\sum_{j=1}^{i} 2^{i-j} \cdot j = 2^{i} \cdot \sum_{j=1}^{i} \frac{j}{2^{j}} = O(2^{i}) = O(n') = O(n) .$$

We proved $\sum_{j=1}^{i} \frac{j}{2^{j}} = O(1)$ in Lecture 4!

 14
 3
 9
 8
 16
 2
 1
 7
 11
 12
 5

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Output Decrease size of heap by 1
 - Heapify(root)

Build-heap()

2 Repeat n times:

- Swap root with last element
- Obcrease size of heap by 1
- Heapify(root)

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Our Decrease size of heap by 1
 - Heapify(root)

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

 14
 12
 9
 11
 5
 2
 1
 7
 8
 3
 16

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Our Decrease size of heap by 1
 - Heapify(root)

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

12 11 9 8 5 2 1 7 3 14 16

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

Build-heap()

2 Repeat n times:

- Swap root with last element
- Decrease size of heap by 1
- Heapify(root)

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - 2 Decrease size of heap by 1
 - Heapify(root)

...

- Build-heap()
- 2 Repeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

1 2 3 5 7 8 9 11 12 14 16

• Build-heap() O(n)

2 Repeat n times:

- Swap root with last element O(1)
- 2 Decrease size of heap by 1 O(1)
- Heapify(root) $O(\log n)$

Runtime: $O(n \log n)$

Example:

- Build-heap()
- Prepeat n times:
 - Swap root with last element
 - O Decrease size of heap by 1
 - Heapify(root)

Example:

- Build-heap()
- Prepeat n times:
 - Swap root with last element
 - O Decrease size of heap by 1
 - Heapify(root)

Example:

- Build-heap()
- Prepeat n times:
 - Swap root with last element
 - O Decrease size of heap by 1
 - Heapify(root)

Example:

- Build-heap()
- Prepeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Iteapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Example:

- Build-heap()
- Prepeat n times:
 - Swap root with last element
 - Obcrease size of heap by 1
 - Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Are all Functions Asymptotically Comparable?

Let f, g be positive functions. Is the following statement true?

Claim. $f(n) \notin O(g(n)) \Rightarrow g(n) \in O(f(n))$. false!

19/20

Are all Functions Asymptotically Comparable? (2)

$$f(n) = n$$
 and $g(n) = n^{1+0.1\sin(n)}$

Not all Functions are asymptotically comparable!

- Observe that $n^{1+0.1 \sin(n)}$ is infinitely often equal to $n^{1.1}$ and infinitely often equal to $n^{0.9}$
- Therefore, neither $f(n) \in O(g(n))$ nor $g(n) \in O(f(n))$

Another Example: