Solving Recurrences I
 COMS10007 2020, Lecture 13

Dr. John Lapinskas
(substituting for Dr. Christian Konrad)

March 16th 2020

Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the divide-and-conquer approach:
(1) Divide the problem into smaller instances of the same problem.
(2) Conquer the subproblems by solving them, either recursively or directly.
(3) Combine the solutions to the subproblems into a solution for the original problem.

Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the divide-and-conquer approach:
(1) Divide the problem into smaller instances of the same problem.
(2) Conquer the subproblems by solving them, either recursively or directly.
(3) Combine the solutions to the subproblems into a solution for the original problem.

For example:

- Mergesort.
- Quicksort.
- The maximum subarray algorithm.
- Binary search.
- Fast-Peak-Finding.

Example: Merge sort

Recall: Merge Sort

(1) Divide

Split input array A of length n into subarrays $A_{1}=A[0,\lfloor n / 2\rfloor]$ and $A_{2}=A[\lfloor n / 2\rfloor+1, n-1]$

Example: Merge sort

Recall: Merge Sort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer

Sort A_{1} and A_{2} recursively using the same algorithm

Example: Merge sort

Recall: Merge Sort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Example: Merge sort

Recall: Merge Sort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Runtime: (assuming that n is a power of 2)

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

How to solve recurrences?

Recurrences

- Divide-and-conquer algorithms naturally lead to recurrences (or "recurrence relations") like that one.
- How can we solve them? Or at least get a decent upper bound?

How to solve recurrences?

Recurrences

- Divide-and-conquer algorithms naturally lead to recurrences (or "recurrence relations") like that one.
- How can we solve them? Or at least get a decent upper bound?

Methods for solving recurrences

- Recursion-tree method (as used for mergesort and max subarray). Often has too many awkward details (e.g. floors and ceilings, pivots), but great for getting intuition.
- Substitution method (this lecture).

Very powerful, but needs a reasonable initial guess.

- The "Master Theorem".

Only applies to recurrences of the form $T(n)=a T(n / b)+f(n)$, but makes things trivial when it does apply. Not covered in this course.
Generally: use recursion-tree to get a guess for substitution!

The substitution method

The substitution method

(1) Remove the O-notation from the recurrence.
(2) Guess a partial form of the solution (with some unknown constants).
(3) Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...

The substitution method

The substitution method

(1) Remove the O-notation from the recurrence.
(2) Guess a partial form of the solution (with some unknown constants).
(3) Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...
Example: The recurrence from mergesort (when n is a power of two).

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

The substitution method

The substitution method

(1) Remove the O-notation from the recurrence.
(2) Guess a partial form of the solution (with some unknown constants).
(3) Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...
Example: The recurrence from mergesort (when n is a power of two).

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

Step 1: Replace the O-notation by constants.

The substitution method

The substitution method

(1) Remove the O-notation from the recurrence.
(2) Guess a partial form of the solution (with some unknown constants).
(3) Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...
Example: The recurrence from mergesort (when n is a power of two).

$$
\begin{array}{lll}
T(1)=O(1), & \longrightarrow \quad & T(n) \leq c_{1} \\
T(n)=2 T(n / 2)+O(n) . & & T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n \leq n_{0}, \\
n>n_{0} .
\end{array}
$$

Step 1: Replace the O-notation by constants. Remember, $f(n) \in O(g(n))$ means that there exist C and n_{0} such that for all $n \geq n_{0}, f(n) \leq C g(n)$.

The substitution method

The substitution method

(1) Remove the O-notation from the recurrence.
(2) Guess a partial form of the solution (with some unknown constants).
(3) Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...
Example: The recurrence from mergesort (when n is a power of two).

$$
\begin{array}{lll}
T(1)=O(1), & \longrightarrow & T(n) \leq c_{1} \\
T(n)=2 T(n / 2)+O(n) . & & T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n \leq n_{0}, \\
n>n_{0} .
\end{array}
$$

Step 1: Replace the O-notation by constants. Remember, $f(n) \in O(g(n))$ means that there exist C and n_{0} such that for all $n \geq n_{0}, f(n) \leq C g(n)$.

For mergesort specifically, we can take $n_{0}=1$.

The substitution method

The substitution method

(1) Remove the O-notation from the recurrence.
(2) Guess a partial form of the solution (with some unknown constants).
(3) Use mathematical induction to show the solution works for the right choice of constants.

Dealing with O-notation can introduce some added complications...
Example: The recurrence from mergesort (when n is a power of two).

$$
\begin{array}{lll}
T(1)=O(1), & \longrightarrow \quad T(1) \leq c_{1} \\
T(n)=2 T(n / 2)+O(n) . & & T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{array}
$$

Step 1: Replace the O-notation by constants. Remember, $f(n) \in O(g(n))$ means that there exist C and n_{0} such that for all $n \geq n_{0}, f(n) \leq C g(n)$.

For mergesort specifically, we can take $n_{0}=1$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 2: Guess a bound. Here, guess $T(n) \leq C n \log n$ for some $C>0$.
Step 3: Prove it works by induction.
Base case $\boldsymbol{n}=1: T(1) \leq c_{1}$, and $C \cdot 1 \log (1)=0>c_{1}$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 2: Guess a bound. Here, guess $T(n) \leq C n \log n$ for some $C>0$.
Step 3: Prove it works by induction.
Base case $\boldsymbol{n}=1: T(1) \leq c_{1}$, and $C \cdot 1 \log (1)=0>c_{1} \ldots$ wait, no. :-(

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 2: Guess a bound. Here, guess $T(n) \leq C n \log n$ for some $C>0$.
Step 3: Prove it works by induction.
Base case $\boldsymbol{n}=1: T(1) \leq c_{1}$, and $C \cdot 1 \log (1)=0>c_{1} \ldots$ wait, no. :-(But it's fine! We're only trying to prove $T(n)=O(n \log n)$, which means we need $T(n) \leq C n \log n$ for all $n \geq n_{0}$ (for some C, n_{0} of our choice).

We don't need $T(1) \leq C \cdot 1 \log 1$. We can just take $n_{0}=2$.
Key point: Since we're only going for asymptotic results, not exact results, we can choose any base case we want.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $n \geq 2$. Note that we haven't fixed a value for C yet - we'll see what values work over the course of the proof.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq 2$. Note that we haven't fixed a value for C yet - we'll see what values work over the course of the proof.

Base case $\boldsymbol{n}=2$: We have

$$
T(2) \leq 2 T(1)+c_{2} \cdot 2 \leq 2\left(c_{1}+c_{2}\right)
$$

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $n \geq 2$. Note that we haven't fixed a value for C yet - we'll see what values work over the course of the proof.

Base case $\boldsymbol{n}=2$: We have

$$
\begin{aligned}
T(2) \leq 2 T(1)+c_{2} \cdot 2 & \leq 2\left(c_{1}+c_{2}\right), \\
C \cdot 2 \log 2 & =2 C
\end{aligned}
$$

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Note that we haven't fixed a value for C yet - we'll see what values work over the course of the proof.

Base case $\boldsymbol{n}=2$: We have

$$
\begin{aligned}
T(2) \leq 2 T(1)+c_{2} \cdot 2 & \leq 2\left(c_{1}+c_{2}\right), \\
C \cdot 2 \log 2 & =2 C .
\end{aligned}
$$

So $T(2) \leq C \cdot 2 \log 2$ as long as we choose $\boldsymbol{C} \geq \boldsymbol{c}_{1}+\boldsymbol{c}_{2}$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq 2$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}$. Then we must prove $T(n) \leq C n \log n$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}$. Then we must prove $T(n) \leq C n \log n$.

By the induction hypothesis,

$$
T(n) \leq 2 T(n / 2)+c_{2} n
$$

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}$. Then we must prove $T(n) \leq C n \log n$.

By the induction hypothesis,

$$
T(n) \leq 2 T(n / 2)+c_{2} n \leq 2 C \cdot \frac{n}{2} \log (n / 2)+c_{2} n
$$

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}$. Then we must prove $T(n) \leq C n \log n$.

By the induction hypothesis,

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \cdot \frac{n}{2} \log (n / 2)+c_{2} n \\
& =C n(\log (n)-1)+c_{2} n
\end{aligned}
$$

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}$. Then we must prove $T(n) \leq C n \log n$.

By the induction hypothesis,

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \cdot \frac{n}{2} \log (n / 2)+c_{2} n \\
& =C n(\log (n)-1)+c_{2} n=C n \log (n)+\left(c_{2}-C\right) n
\end{aligned}
$$

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq \mathbf{2}$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.

Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}$. Then we must prove $T(n) \leq C n \log n$.

By the induction hypothesis,

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \cdot \frac{n}{2} \log (n / 2)+c_{2} n \\
& =C n(\log (n)-1)+c_{2} n=C n \log (n)+\left(c_{2}-C\right) n
\end{aligned}
$$

This is at most $C n \log n$ as long as we choose $C \geq \boldsymbol{c}_{2}$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $n \geq 2$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$. Inductive step: Requires $C \geq c_{2}$.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $\boldsymbol{n} \geq 2$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$. Inductive step: Requires $C \geq c_{2}$.

So we have proved $T(n) \leq\left(c_{1}+c_{2}\right) \log n$ for all $n \geq 2$.
This implies $T(n)=O(n \log n)$, as we were hoping.

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $n \geq 2$. Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$. Inductive step: Requires $C \geq c_{2}$.

So we have proved $T(n) \leq\left(c_{1}+c_{2}\right) \log n$ for all $n \geq 2$.
This implies $T(n)=O(n \log n)$, as we were hoping.
But what if n isn't a power of 2 ?

The substitution method

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n \text { for all } n>1
\end{aligned}
$$

Step 3: Prove by induction that $T(n) \leq C n \log n$ for all $n \geq 2$.
Base case $\boldsymbol{n}=2$: Requires $C \geq c_{1}+c_{2}$.
Inductive step: Requires $C \geq c_{2}$.
So we have proved $T(n) \leq\left(c_{1}+c_{2}\right) \log n$ for all $n \geq 2$.
This implies $T(n)=O(n \log n)$, as we were hoping.
But what if n isn't a power of 2 ?
For a back-of-the-envelope calculation, we'd just say $T(n) \leq T(N)$ where N is the nearest power of two. But sometimes this might be false...

Dealing with floors and ceilings

The "real" recurrence for mergesort is

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

To deal with floors and ceilings, our guess needs an additive term. Let's try to find C and a such that $T(n) \leq C n \log (n)+a$ for all $n \geq 2$.

Dealing with floors and ceilings

The "real" recurrence for mergesort is

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

To deal with floors and ceilings, our guess needs an additive term. Let's try to find C and a such that $T(n) \leq C n \log (n)+a$ for all $n \geq 2$.

Base case $\boldsymbol{n}=2$:
As before, $T(2) \leq 2 T(1)+2 c_{2} \leq 2\left(c_{1}+c_{2}\right)$.

Dealing with floors and ceilings

The "real" recurrence for mergesort is

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

To deal with floors and ceilings, our guess needs an additive term. Let's try to find C and a such that $T(n) \leq C n \log (n)+a$ for all $n \geq 2$.

Base case $\boldsymbol{n}=2$:
As before, $T(2) \leq 2 T(1)+2 c_{2} \leq 2\left(c_{1}+c_{2}\right)$.
Also, we have $C \cdot 2 \log (2)+a=2 C+a$.

Dealing with floors and ceilings

The "real" recurrence for mergesort is

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

To deal with floors and ceilings, our guess needs an additive term. Let's try to find C and a such that $T(n) \leq C n \log (n)+a$ for all $n \geq 2$.

Base case $\boldsymbol{n}=2$:
As before, $T(2) \leq 2 T(1)+2 c_{2} \leq 2\left(c_{1}+c_{2}\right)$.
Also, we have $C \cdot 2 \log (2)+a=2 C+a$.
So the base case works whenever $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$. Then we must prove $T(n) \leq C n \log n+a$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$.
Then we must prove $T(n) \leq C n \log n+a$. We have

$$
\begin{aligned}
T(n) & \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \\
& \leq C\left(\left\lfloor\frac{n}{2}\right\rfloor \log (\lfloor n / 2\rfloor)+\left\lceil\frac{n}{2}\right\rceil \log (\lceil n / 2\rceil)\right)+2 a+c_{2} n .
\end{aligned}
$$

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$.
Then we must prove $T(n) \leq C n \log n+a$. We have

$$
\begin{aligned}
T(n) & \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \\
& \leq C\left(\left\lfloor\frac{n}{2}\right\rfloor \log (\lfloor n / 2\rfloor)+\left\lceil\frac{n}{2}\right\rceil \log (\lceil n / 2\rceil)\right)+2 a+c_{2} n .
\end{aligned}
$$

To deal with floors and ceilings, we normally use these bounds: $\lfloor x\rfloor \leq x$ for all $x \in \mathbb{R}, \quad\lceil x\rceil \leq x+1$ for all $x \in \mathbb{R}, \quad\lceil x\rceil \leq 2 x$ for all $x \geq 1$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$.
Then we must prove $T(n) \leq C n \log n+a$. We have

$$
\begin{aligned}
T(n) & \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \\
& \leq C\left(\left\lfloor\frac{n}{2}\right\rfloor \log (\lfloor n / 2\rfloor)+\left\lceil\frac{n}{2}\right\rceil \log (\lceil n / 2\rceil)\right)+2 a+c_{2} n .
\end{aligned}
$$

To deal with floors and ceilings, we normally use these bounds: $\lfloor x\rfloor \leq x$ for all $x \in \mathbb{R}, \quad\lceil x\rceil \leq x+1$ for all $x \in \mathbb{R}, \quad\lceil x\rceil \leq 2 x$ for all $x \geq 1$. Using the "right" bounds in the "right" expressions:

$$
T(n) \leq C\left(\frac{n}{2} \log (n / 2)+\left(\frac{n}{2}+1\right) \log (n)\right)+2 a+c_{2} n .
$$

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$. Then we must prove $T(n) \leq C n \log n+a$. We showed

$$
T(n) \leq C\left(\frac{n}{2} \log (n / 2)+\left(\frac{n}{2}+1\right) \log (n)\right)+2 a+c_{2} n
$$

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$. Then we must prove $T(n) \leq C n \log n+a$. We showed

$$
T(n) \leq C\left(\frac{n}{2} \log (n / 2)+\left(\frac{n}{2}+1\right) \log (n)\right)+2 a+c_{2} n
$$

We also bound $\log (n / 2) \leq \log (n)$ to make the algebra a bit easier.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$. Then we must prove $T(n) \leq C n \log n+a$. We showed

$$
T(n) \leq C\left(\frac{n}{2} \log (\boldsymbol{n})+\left(\frac{n}{2}+1\right) \log (n)\right)+2 a+c_{2} n
$$

We also bound $\log (n / 2) \leq \log (n)$ to make the algebra a bit easier.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Suppose that for all $2 \leq n^{\prime}<n, T\left(n^{\prime}\right) \leq C n^{\prime} \log n^{\prime}+a$.
Then we must prove $T(n) \leq C n \log n+a$. We showed

$$
T(n) \leq C\left(\frac{n}{2} \log (\boldsymbol{n})+\left(\frac{n}{2}+1\right) \log (n)\right)+2 a+c_{2} n
$$

We also bound $\log (n / 2) \leq \log (n)$ to make the algebra a bit easier. Then rearranging gives:

$$
T(n) \leq C n \log (n)+\log (n)+2 a+c_{2} n
$$

This is at most $C n \log (n)$ as long as we take $a \leq-\left(\log (n)+c_{2} n\right) / 2$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Requires $a \leq-\left(\log (n)+c_{2} n\right) / 2$.
So all that's left is to pick C and a that work.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $n=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Requires $a \leq-\left(\log (n)+c_{2} n\right) / 2$.
So all that's left is to pick C and a that work.
If we take $a(n)=-\left(\log (n)+c_{2} n\right) / 2$, then the inductive step works and $a(2)=-\frac{1}{2}-c_{2}$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2 .
\end{aligned}
$$

Goal: Prove by induction that for all $n \geq 2, T(n) \leq C n \log (n)+a$.
Base case $\boldsymbol{n}=2$: Requires $2 C+a \geq 2\left(c_{1}+c_{2}\right)$.
Inductive step: Requires $a \leq-\left(\log (n)+c_{2} n\right) / 2$.
So all that's left is to pick C and a that work.
If we take $a(n)=-\left(\log (n)+c_{2} n\right) / 2$, then the inductive step works and $a(2)=-\frac{1}{2}-c_{2}$.
So to make the base case work, we take

$$
C=c_{1}+c_{2}-\frac{a}{2}=c_{1}+\frac{3}{2} c_{2}+\frac{1}{4}>0 .
$$

(Note we do need $C>0$ here!)

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

We proved: Let $C=c_{1}+\frac{3}{2} c_{2}+\frac{1}{4}$, and let $a(n)=-\frac{1}{2}\left(c_{2} n+\log (n)\right)$. Then $T(n) \leq C n \log (n)+a(n)$ for all $n \geq 2$.

Dealing with floors and ceilings

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c_{2} n \text { for all } n \geq 2
\end{aligned}
$$

We proved: Let $C=c_{1}+\frac{3}{2} c_{2}+\frac{1}{4}$, and let $a(n)=-\frac{1}{2}\left(c_{2} n+\log (n)\right)$. Then $T(n) \leq C n \log (n)+a(n)$ for all $n \geq 2$.

In particular, this implies $T(n)=O(n \log n)$ as before. Phew!
Note we proved something stronger than $T(n) \leq C n \log (n)$ for all $n \geq 2$. And yet, if we'd tried the proof with $a(n)=0$, it wouldn't have worked! It's counterintuitive, but if you're having trouble with an induction, strengthening your inductive hypothesis can be very helpful.

Next time: More examples!

(Lecture to be given online...)

