Solving Recurrences |

COMS10007 2020, Lecture 13

Dr. John Lapinskas
(substituting for Dr. Christian Konrad)

March 16th 2020

John Lapinskas Lecture 27 March 16th 2020 1/14

Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the
divide-and-conquer approach:
@ Divide the problem into smaller instances of the same problem.

@ Conquer the subproblems by solving them, either recursively or
directly.

© Combine the solutions to the subproblems into a solution for the
original problem.

John Lapinskas Lecture 27 March 16th 2020 2/14

Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the
divide-and-conquer approach:
@ Divide the problem into smaller instances of the same problem.

@ Conquer the subproblems by solving them, either recursively or
directly.

© Combine the solutions to the subproblems into a solution for the
original problem.
For example:
o Mergesort.
@ Quicksort.
@ The maximum subarray algorithm.
@ Binary search.
o FAST-PEAK-FINDING.

John Lapinskas Lecture 27 March 16th 2020

2/14

Example: Merge sort

Recall: Merge Sort
© Divide

Split input array A of length n into subarrays A; = A[0, | n/2]]
and Ay = A[[n/2] +1,n—1]

|12

9|7|2|3|8|15|7|

o] EIEEIE

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Example: Merge sort

Recall: Merge Sort

@ Divide A — A; and A;

@ Conquer

Sort A; and A; recursively using the same algorithm

E

T[] [5]7]

2] 7)o 2|7] e]

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Example: Merge sort

Recall: Merge Sort

@ Divide A — A; and A;
@ Conquer Solve A; and A;

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

2[5 7 [] []s]

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

Example: Merge sort

Recall: Merge Sort

@ Divide A — A; and A;
@ Conquer Solve A; and A;

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

2[5 7 [] []s]

2] 7)o EIEAENED

Runtime: (assuming that n is a power of 2)

T(1) = 0(1)
T(n) = 2T(n/2)+ O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences

How to solve recurrences?

Recurrences

@ Divide-and-conquer algorithms naturally lead to recurrences
(or “recurrence relations”) like that one.

@ How can we solve them? Or at least get a decent upper bound?

John Lapinskas Lecture 27 March 16th 2020 3/14

How to solve recurrences?

Recurrences

@ Divide-and-conquer algorithms naturally lead to recurrences
(or “recurrence relations”) like that one.

@ How can we solve them? Or at least get a decent upper bound?
Methods for solving recurrences

@ Recursion-tree method (as used for mergesort and max subarray).
Often has too many awkward details (e.g. floors and ceilings, pivots),
but great for getting intuition.

@ Substitution method (this lecture).

Very powerful, but needs a reasonable initial guess.

@ The “Master Theorem”.
Only applies to recurrences of the form T(n) = aT(n/b) + f(n), but
makes things trivial when it does apply. Not covered in this course.

Generally: use recursion-tree to get a guess for substitution!

John Lapinskas Lecture 27 March 16th 2020 3/14

The substitution method

The substitution method
@ Remove the O-notation from the recurrence.
@ Guess a partial form of the solution (with some unknown constants).
© Use mathematical induction to show the solution works for the right

choice of constants.
Dealing with O-notation can introduce some added complications...

John Lapinskas Lecture 27 March 16th 2020 4/14

The substitution method

The substitution method
@ Remove the O-notation from the recurrence.
@ Guess a partial form of the solution (with some unknown constants).
© Use mathematical induction to show the solution works for the right
choice of constants.
Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T(1) = 0(1),
T(n)=2T(n/2) + O(n).

John Lapinskas Lecture 27 March 16th 2020 4/14

The substitution method

The substitution method
@ Remove the O-notation from the recurrence.
@ Guess a partial form of the solution (with some unknown constants).
© Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T(1) = 0(1),
T(n)=2T(n/2) + O(n).

Step 1: Replace the O-notation by constants.
March 16th 2020 4/14

John Lapinskas Lecture 27

The substitution method

The substitution method
@ Remove the O-notation from the recurrence.
@ Guess a partial form of the solution (with some unknown constants).

© Use mathematical induction to show the solution works for the right
choice of constants.
Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

(1)
T(n)=2T(n/2)+ O(n). T(n) <2T(n/2) + cyn for all n > no.

0o(1), — T(n) < for all n < ng,

Step 1: Replace the O-notation by constants. Remember, f(n) € O(g(n))
means that there exist C and ng such that for all n > ng, f(n) < Cg(n).

John Lapinskas Lecture 27 March 16th 2020 4/14

The substitution method

The substitution method
@ Remove the O-notation from the recurrence.
@ Guess a partial form of the solution (with some unknown constants).

© Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

(1)
T(n)=2T(n/2)+ O(n). T(n) <2T(n/2)+ con for all n > ng.

0o(1), — T(n) < for all n < ng,

Step 1: Replace the O-notation by constants. Remember, f(n) € O(g(n))
means that there exist C and ng such that for all n > ng, f(n) < Cg(n).

For mergesort specifically, we can take ng = 1.

John Lapinskas Lecture 27 March 16th 2020 4/14

The substitution method

The substitution method
@ Remove the O-notation from the recurrence.
@ Guess a partial form of the solution (with some unknown constants).

© Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...
Example: The recurrence from mergesort (when n is a power of two).
T(1) = 0(Q), — T(Q) < a,
T(n) =2T(n/2) 4+ O(n). T(n) <2T(n/2)+ can for all n > 1.

Step 1: Replace the O-notation by constants. Remember, f(n) € O(g(n))
means that there exist C and ng such that for all n > ng, f(n) < Cg(n).

For mergesort specifically, we can take ng = 1.

John Lapinskas Lecture 27 March 16th 2020 4/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.

Step 2: Guess a bound. Here, guess T(n) < Cnlog n for some C > 0.
Step 3: Prove it works by induction.
Base case n = 1: T(1) < ¢, and C-1log(l) =0 > ¢.

John Lapinskas Lecture 27 March 16th 2020 5/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.

Step 2: Guess a bound. Here, guess T(n) < Cnlog n for some C > 0.
Step 3: Prove it works by induction.
Base case n = 1: T(1) < ¢, and C-1log(1l) =0 > c;... wait, no. :=(

John Lapinskas Lecture 27 March 16th 2020 5/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.

Step 2: Guess a bound. Here, guess T(n) < Cnlog n for some C > 0.
Step 3: Prove it works by induction.
Base case n = 1: T(1) < ¢, and C-1log(1l) =0 > c;... wait, no. :=(

But it's fine! We're only trying to prove T(n) = O(nlog n), which means
we need T(n) < Cnlog n for all n > ngy (for some C, ng of our choice).

We don’t need T(1) < C-1llogl. We can just take ny = 2.
Key point: Since we're only going for asymptotic results, not exact

results, we can choose any base case we want.

John Lapinskas Lecture 27 March 16th 2020 5/14

The substitution method

T(1) <,
T(n) <2T(n/2) + con for all n > 1.

Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Note that we haven't fixed a value for C yet — we'll see what values work
over the course of the proof.

John Lapinskas Lecture 27 March 16th 2020 6/14

The substitution method

T(1) <,
T(n) <2T(n/2) + con for all n > 1.

Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Note that we haven't fixed a value for C yet — we'll see what values work
over the course of the proof.

Base case n = 2: We have

T(2) < 2T(1) +c-2< 2(C1 + CQ),

John Lapinskas Lecture 27 March 16th 2020 6/14

The substitution method

T(1) <,
T(n) <2T(n/2) + con for all n > 1.

Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Note that we haven't fixed a value for C yet — we'll see what values work
over the course of the proof.

Base case n = 2: We have

T(2) < 2T(1) +c-2< 2(C1 + C2),
C-2log2 = 2C.

John Lapinskas Lecture 27 March 16th 2020 6/14

The substitution method

T(1) <,
T(n) <2T(n/2) + con for all n > 1.

Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Note that we haven't fixed a value for C yet — we'll see what values work
over the course of the proof.

Base case n = 2: We have

T(2) < 2T(1) +c-2< 2(C1 + C2),
C-2log2 = 2C.

So T(2) < C-2log?2 as long as we choose C > ¢ + ©. v

John Lapinskas Lecture 27 March 16th 2020 6/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Suppose that for all 2 < n’ < n, T(n’) < Cn’logn’.
Then we must prove T(n) < Cnlog n.

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Suppose that for all 2 < n’ < n, T(n’) < Cn’logn’.
Then we must prove T(n) < Cnlog n.

By the induction hypothesis,

T(n) <2T(n/2)+ c2n

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Suppose that for all 2 < n’ < n, T(n’) < Cn’logn’.
Then we must prove T(n) < Cnlog n.

By the induction hypothesis,

T(n) <2T(n/2) + can < 2C - g log(n/2) + can

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Suppose that for all 2 < n’ < n, T(n’) < Cn’logn’.
Then we must prove T(n) < Cnlog n.

By the induction hypothesis,

T(n) <2T(n/2) + can < 2C - g log(n/2) + can

= Cn(log(n) — 1) + con

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Suppose that for all 2 < n’ < n, T(n’) < Cn’logn’.
Then we must prove T(n) < Cnlog n.

By the induction hypothesis,

T(n) <2T(n/2) + can < 2C - g log(n/2) + can

= Cn(log(n) — 1) + con = Cnlog(n) + (c2 — C)n.

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < a,
T(n) <2T(n/2)+ cn for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.

Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Suppose that for all 2 < n’ < n, T(n’) < Cn’logn’.
Then we must prove T(n) < Cnlog n.

By the induction hypothesis,

g log(n/2) + con

= Cn(log(n) — 1) + con = Cnlog(n) + (c2 — C)n.

T(n) <2T(n/2)+ can < 2C -

This is at most Cnlog n as long as we choose C > c;. v

John Lapinskas Lecture 27 March 16th 2020 7/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.
Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Requires C > c. v

John Lapinskas Lecture 27 March 16th 2020 8/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.
Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Requires C > c. v

So we have proved T(n) < (c1 + ¢2) logn for all n > 2.
This implies T(n) = O(nlog n), as we were hoping. O

John Lapinskas Lecture 27 March 16th 2020 8/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.
Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Requires C > c. v

So we have proved T(n) < (c1 + ¢2) logn for all n > 2.
This implies T(n) = O(nlog n), as we were hoping. O

But what if nisn't a power of 27

John Lapinskas Lecture 27 March 16th 2020 8/14

The substitution method

T(1) < c,
T(n) <2T(n/2) + con for all n > 1.
Step 3: Prove by induction that T(n) < Cnlogn for all n > 2.
Base case n = 2: Requires C > ¢1 + o. v

Inductive step: Requires C > c. v

So we have proved T(n) < (c1 + ¢2) logn for all n > 2.
This implies T(n) = O(nlog n), as we were hoping. O
But what if nisn't a power of 27

For a back-of-the-envelope calculation, we'd just say T(n) < T(N) where
N is the nearest power of two. But sometimes this might be false...

John Lapinskas Lecture 27 March 16th 2020 8/14

Dealing with floors and ceilings

The “real” recurrence for mergesort is

T(1)
T(n)

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T(n) < Cnlog(n) + a for all n > 2.

7

<c
< T(|n/2])+ T([n/2]) + con for all n > 2.

John Lapinskas Lecture 27 March 16th 2020 9/14

Dealing with floors and ceilings

The “real” recurrence for mergesort is
T(l) < c,
T(n) < T(|n/2])+ T([n/2]) + can for all n > 2.

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T(n) < Cnlog(n) + a for all n > 2.

Base case n = 2:

As before, T(2) <2T(1) +2c < 2(c1 +).

John Lapinskas Lecture 27 March 16th 2020 9/14

Dealing with floors and ceilings

The “real” recurrence for mergesort is

T(l) < c,

T(n) < T(|n/2])+ T([n/2]) + can for all n > 2.
To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T(n) < Cnlog(n) + a for all n > 2.
Base case n = 2:

As before, T(2) <2T(1) +2c < 2(c1 +).
Also, we have C - 2log(2) +a=2C + a.

John Lapinskas Lecture 27 March 16th 2020 9/14

Dealing with floors and ceilings

The “real” recurrence for mergesort is

T(l) < c,

T(n) < T(|n/2])+ T([n/2]) + can for all n > 2.
To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T(n) < Cnlog(n) + a for all n > 2.
Base case n = 2:

As before, T(2) <2T(1) +2c < 2(c1 +).
Also, we have C - 2log(2) +a=2C + a.

So the base case works whenever 2C + a > 2(c1 +). v

John Lapinskas Lecture 27 March 16th 2020 9/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T(ln/2])+ T([n/2]) + can for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(c1 +). v

John Lapinskas Lecture 27 March 16th 2020 10/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T(ln/2])+ T([n/2]) + can for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(c1 +). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a.

John Lapinskas Lecture 27 March 16th 2020 10/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T(ln/2])+ T([n/2]) + can for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.

Base case n = 2: Requires 2C + a > 2(c1 +). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We have

T(n) < T(|n/2])+ T([n/2]) + c2n
< c([gJ log([n/2]) + [g] |og([n/21)) +2a+ cn.

John Lapinskas Lecture 27 March 16th 2020 10/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T(ln/2])+ T([n/2]) + can for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(c1 +). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We have

T(n) < T(|n/2])+ T([n/2]) + c2n
< c([gJ log([n/2]) + [g] |og([n/21)) +2a+ cn.

To deal with floors and ceilings, we normally use these bounds:

|x] <xforall xeR, [x]<x+1forall xeR, [x]<2xforallx>1.

John Lapinskas Lecture 27 March 16th 2020 10/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T(ln/2])+ T([n/2]) + can for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(c1 +). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We have

T(n) < T(|n/2])+ T([n/2]) + c2n
n n

< — — .

< c(M log(|n/2]) + u |og([n/21)) +2a+cn
To deal with floors and ceilings, we normally use these bounds:
|x] <xforall xeR, [x]<x+1forall xeR, [x]<2xforallx>1.
Using the “right” bounds in the “right” expressions:

T(n) < C(ﬁ log(n/2) + (ﬁ + 1) Iog(n)) +2a+ on.
- 2 2

John Lapinskas Lecture 27 March 16th 2020 10/14

Dealing with floors and ceilings

T(l) < 1,
T(n) < T(ln/2])+ T([n/2]) + con for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(cy + o). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We showed

T(n) < C(g log(n/2) + (g + 1) Iog(n)) +2a+ on.

John Lapinskas Lecture 27 March 16th 2020 11/14

Dealing with floors and ceilings

T(l) < 1,
T(n) < T(ln/2])+ T([n/2]) + con for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(cy + o). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We showed

T(n) < C(g log(n/2) + (g + 1) Iog(n)) +2a+ on.

We also bound log(n/2) < log(n) to make the algebra a bit easier.

John Lapinskas Lecture 27 March 16th 2020 11/14

Dealing with floors and ceilings

T(l) < 1,
T(n) < T(ln/2])+ T([n/2]) + con for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(cy + o). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We showed

T(n) < C(g log(n) + (g + 1) Iog(n)) +2a+ on.

We also bound log(n/2) < log(n) to make the algebra a bit easier.

John Lapinskas Lecture 27 March 16th 2020 11/14

Dealing with floors and ceilings

T(l) < 1,
T(n) < T(ln/2])+ T([n/2]) + con for all n > 2.
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a.
Base case n = 2: Requires 2C + a > 2(cy + o). v

Inductive step: Suppose that for all 2 < n’ < n, T(n') < Cn’logn’ + a.
Then we must prove T(n) < Cnlogn+ a. We showed

T(n) < C(g log(n) + (g + 1) Iog(n)) +2a+ on.

We also bound log(n/2) < log(n) to make the algebra a bit easier.
Then rearranging gives:

T(n) < Cnlog(n) + log(n) + 2a+ cn

This is at most Cnlog(n) as long as we take a < —(log(n) + cxn)/2. v

John Lapinskas Lecture 27 March 16th 2020 11/14

Dealing with floors and ceilings

< c,
< T(|n/2])+ T([n/2]) + con for all n > 2.

T(n)
Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a
Base case n = 2: Requires 2C + a > 2(c1 +). v

Inductive step: Requires a < —(log(n) + c2n)/2. v

So all that's left is to pick C and a that work.

John Lapinskas Lecture 27 March 16th 2020 12/14

Dealing with floors and ceilings

<
<

C1,
T(n) < T(|[n/2])+ T([n/2]) + con for all n > 2.

Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a
Base case n = 2: Requires 2C + a > 2(c1 +). v
Inductive step: Requires a < —(log(n) + c2n)/2. v

So all that's left is to pick C and a that work.

If we take a(n) = —(log(n) + c2n)/2, then the inductive step works and
a2) = -1 -o.

John Lapinskas Lecture 27 March 16th 2020 12/14

Dealing with floors and ceilings

<
<

C1,
T(n) < T(|[n/2])+ T([n/2]) + con for all n > 2.

Goal: Prove by induction that for all n > 2, T(n) < Cnlog(n) + a
Base case n = 2: Requires 2C + a > 2(c1 +). v
Inductive step: Requires a < —(log(n) + c2n)/2. v

So all that's left is to pick C and a that work.

If we take a(n) = —(log(n) + c2n)/2, then the inductive step works and
a2) = -1 -o.

So to make the base case work, we take

a 3 1
_ _ 9 _ e -)
C=c+o 2—C1+2C2+ >0

(Note we do need C > 0 here!)

John Lapinskas Lecture 27 March 16th 2020 12/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T([n/2])+ T([n/2]) + can for all n > 2.

We proved: Let C = c; + 3¢, + 7, and let a(n) = —1(con + log(n)).
Then T(n) < Cnlog(n) + a(n) for all n > 2. O

John Lapinskas Lecture 27 March 16th 2020 13/14

Dealing with floors and ceilings

T(1) < a,
T(n) < T([n/2])+ T([n/2]) + can for all n > 2.

We proved: Let C = c; + 3¢, + 7, and let a(n) = —1(con + log(n)).
Then T(n) < Cnlog(n) + a(n) for all n > 2. O

In particular, this implies T(n) = O(nlog n) as before. Phew!

Note we proved something stronger than T(n) < Cnlog(n) for all n > 2.
And yet, if we'd tried the proof with a(n) = 0, it wouldn't have worked!

It's counterintuitive, but if you're having trouble with an induction,
strengthening your inductive hypothesis can be very helpful.

John Lapinskas Lecture 27 March 16th 2020 13/14

Next time: More examples!

(Lecture to be given online...)

March 16th 2020 14 /14

