
Solving Recurrences I
COMS10007 2020, Lecture 13

Dr. John Lapinskas
(substituting for Dr. Christian Konrad)

March 16th 2020

John Lapinskas Lecture 27 March 16th 2020 1 / 14



Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the
divide-and-conquer approach:

1 Divide the problem into smaller instances of the same problem.

2 Conquer the subproblems by solving them, either recursively or
directly.

3 Combine the solutions to the subproblems into a solution for the
original problem.

For example:

Mergesort.

Quicksort.

The maximum subarray algorithm.

Binary search.

Fast-Peak-Finding.

John Lapinskas Lecture 27 March 16th 2020 2 / 14



Divide-and-conquer algorithms

Many algorithms in this course (and in general!) follow the
divide-and-conquer approach:

1 Divide the problem into smaller instances of the same problem.

2 Conquer the subproblems by solving them, either recursively or
directly.

3 Combine the solutions to the subproblems into a solution for the
original problem.

For example:

Mergesort.

Quicksort.

The maximum subarray algorithm.

Binary search.

Fast-Peak-Finding.

John Lapinskas Lecture 27 March 16th 2020 2 / 14



Example: Merge sort

Recall: Merge Sort

1 Divide
Split input array A of length n into subarrays A1 = A[0, bn/2c]
and A2 = A[bn/2c+ 1, n − 1]

Runtime: (assuming that n is a power of 2)

T (1) = O(1)

T (n) = 2T (n/2) + O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 3 / 15



Example: Merge sort

Recall: Merge Sort

1 Divide A→ A1 and A2

2 Conquer
Sort A1 and A2 recursively using the same algorithm

Runtime: (assuming that n is a power of 2)

T (1) = O(1)

T (n) = 2T (n/2) + O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 3 / 15



Example: Merge sort

Recall: Merge Sort

1 Divide A→ A1 and A2

2 Conquer Solve A1 and A2

3 Combine
Combine sorted subarrays A1 and A2 and obtain sorted array A

Runtime: (assuming that n is a power of 2)

T (1) = O(1)

T (n) = 2T (n/2) + O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 3 / 15



Example: Merge sort

Recall: Merge Sort

1 Divide A→ A1 and A2

2 Conquer Solve A1 and A2

3 Combine
Combine sorted subarrays A1 and A2 and obtain sorted array A

Runtime: (assuming that n is a power of 2)

T (1) = O(1)

T (n) = 2T (n/2) + O(n)

Dr. Christian Konrad Lectures 13/14: Solving Recurrences 3 / 15



How to solve recurrences?

Recurrences

Divide-and-conquer algorithms naturally lead to recurrences
(or “recurrence relations”) like that one.

How can we solve them? Or at least get a decent upper bound?

Methods for solving recurrences

Recursion-tree method (as used for mergesort and max subarray).
Often has too many awkward details (e.g. floors and ceilings, pivots),
but great for getting intuition.

Substitution method (this lecture).
Very powerful, but needs a reasonable initial guess.

The “Master Theorem”.
Only applies to recurrences of the form T(n) = aT(n/b) + f(n), but
makes things trivial when it does apply. Not covered in this course.

Generally: use recursion-tree to get a guess for substitution!

John Lapinskas Lecture 27 March 16th 2020 3 / 14



How to solve recurrences?

Recurrences

Divide-and-conquer algorithms naturally lead to recurrences
(or “recurrence relations”) like that one.

How can we solve them? Or at least get a decent upper bound?

Methods for solving recurrences

Recursion-tree method (as used for mergesort and max subarray).
Often has too many awkward details (e.g. floors and ceilings, pivots),
but great for getting intuition.

Substitution method (this lecture).
Very powerful, but needs a reasonable initial guess.

The “Master Theorem”.
Only applies to recurrences of the form T(n) = aT(n/b) + f(n), but
makes things trivial when it does apply. Not covered in this course.

Generally: use recursion-tree to get a guess for substitution!

John Lapinskas Lecture 27 March 16th 2020 3 / 14



The substitution method

The substitution method

1 Remove the O-notation from the recurrence.

2 Guess a partial form of the solution (with some unknown constants).

3 Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

John Lapinskas Lecture 27 March 16th 2020 4 / 14



The substitution method

The substitution method

1 Remove the O-notation from the recurrence.

2 Guess a partial form of the solution (with some unknown constants).

3 Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T (1) = O(1),

T (n) = 2T (n/2) + O(n).

John Lapinskas Lecture 27 March 16th 2020 4 / 14



The substitution method

The substitution method

1 Remove the O-notation from the recurrence.

2 Guess a partial form of the solution (with some unknown constants).

3 Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T (1) = O(1),

T (n) = 2T (n/2) + O(n).

Step 1: Replace the O-notation by constants.

John Lapinskas Lecture 27 March 16th 2020 4 / 14



The substitution method

The substitution method

1 Remove the O-notation from the recurrence.

2 Guess a partial form of the solution (with some unknown constants).

3 Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T (1) = O(1), −→ T (n) ≤ c1 for all n ≤ n0,

T (n) = 2T (n/2) + O(n). T (n) ≤ 2T (n/2) + c2n for all n > n0.

Step 1: Replace the O-notation by constants. Remember, f (n) ∈ O(g(n))
means that there exist C and n0 such that for all n ≥ n0, f (n) ≤ Cg(n).

John Lapinskas Lecture 27 March 16th 2020 4 / 14



The substitution method

The substitution method

1 Remove the O-notation from the recurrence.

2 Guess a partial form of the solution (with some unknown constants).

3 Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T (1) = O(1), −→ T (n) ≤ c1 for all n ≤ n0,

T (n) = 2T (n/2) + O(n). T (n) ≤ 2T (n/2) + c2n for all n > n0.

Step 1: Replace the O-notation by constants. Remember, f (n) ∈ O(g(n))
means that there exist C and n0 such that for all n ≥ n0, f (n) ≤ Cg(n).

For mergesort specifically, we can take n0 = 1.

John Lapinskas Lecture 27 March 16th 2020 4 / 14



The substitution method

The substitution method

1 Remove the O-notation from the recurrence.

2 Guess a partial form of the solution (with some unknown constants).

3 Use mathematical induction to show the solution works for the right
choice of constants.

Dealing with O-notation can introduce some added complications...

Example: The recurrence from mergesort (when n is a power of two).

T (1) = O(1), −→ T (1) ≤ c1,

T (n) = 2T (n/2) + O(n). T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 1: Replace the O-notation by constants. Remember, f (n) ∈ O(g(n))
means that there exist C and n0 such that for all n ≥ n0, f (n) ≤ Cg(n).

For mergesort specifically, we can take n0 = 1.

John Lapinskas Lecture 27 March 16th 2020 4 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 2: Guess a bound. Here, guess T (n) ≤ Cn log n for some C > 0.

Step 3: Prove it works by induction.

Base case n = 1: T (1) ≤ c1, and C · 1 log(1) = 0 > c1.

.. wait, no. :-(

But it’s fine! We’re only trying to prove T (n) = O(n log n), which means
we need T (n) ≤ Cn log n for all n ≥ n0 (for some C , n0 of our choice).

We don’t need T (1) ≤ C · 1 log 1. We can just take n0 = 2.

Key point: Since we’re only going for asymptotic results, not exact
results, we can choose any base case we want.

John Lapinskas Lecture 27 March 16th 2020 5 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 2: Guess a bound. Here, guess T (n) ≤ Cn log n for some C > 0.

Step 3: Prove it works by induction.

Base case n = 1: T (1) ≤ c1, and C · 1 log(1) = 0 > c1... wait, no. :-(

But it’s fine! We’re only trying to prove T (n) = O(n log n), which means
we need T (n) ≤ Cn log n for all n ≥ n0 (for some C , n0 of our choice).

We don’t need T (1) ≤ C · 1 log 1. We can just take n0 = 2.

Key point: Since we’re only going for asymptotic results, not exact
results, we can choose any base case we want.

John Lapinskas Lecture 27 March 16th 2020 5 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 2: Guess a bound. Here, guess T (n) ≤ Cn log n for some C > 0.

Step 3: Prove it works by induction.

Base case n = 1: T (1) ≤ c1, and C · 1 log(1) = 0 > c1... wait, no. :-(

But it’s fine! We’re only trying to prove T (n) = O(n log n), which means
we need T (n) ≤ Cn log n for all n ≥ n0 (for some C , n0 of our choice).

We don’t need T (1) ≤ C · 1 log 1. We can just take n0 = 2.

Key point: Since we’re only going for asymptotic results, not exact
results, we can choose any base case we want.

John Lapinskas Lecture 27 March 16th 2020 5 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Note that we haven’t fixed a value for C yet — we’ll see what values work
over the course of the proof.

Base case n = 2: We have

T (2) ≤ 2T (1) + c2 · 2 ≤ 2(c1 + c2),

C · 2 log 2 = 2C .

So T (2) ≤ C · 2 log 2 as long as we choose C ≥ c1 + c2. X

John Lapinskas Lecture 27 March 16th 2020 6 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Note that we haven’t fixed a value for C yet — we’ll see what values work
over the course of the proof.

Base case n = 2: We have

T (2) ≤ 2T (1) + c2 · 2 ≤ 2(c1 + c2),

C · 2 log 2 = 2C .

So T (2) ≤ C · 2 log 2 as long as we choose C ≥ c1 + c2. X

John Lapinskas Lecture 27 March 16th 2020 6 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Note that we haven’t fixed a value for C yet — we’ll see what values work
over the course of the proof.

Base case n = 2: We have

T (2) ≤ 2T (1) + c2 · 2 ≤ 2(c1 + c2),

C · 2 log 2 = 2C .

So T (2) ≤ C · 2 log 2 as long as we choose C ≥ c1 + c2. X

John Lapinskas Lecture 27 March 16th 2020 6 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Note that we haven’t fixed a value for C yet — we’ll see what values work
over the course of the proof.

Base case n = 2: We have

T (2) ≤ 2T (1) + c2 · 2 ≤ 2(c1 + c2),

C · 2 log 2 = 2C .

So T (2) ≤ C · 2 log 2 as long as we choose C ≥ c1 + c2. X

John Lapinskas Lecture 27 March 16th 2020 6 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n ≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n = Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n ≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n = Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n

≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n = Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n ≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n = Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n ≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n

= Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n ≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n = Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′.
Then we must prove T (n) ≤ Cn log n.

By the induction hypothesis,

T (n) ≤ 2T (n/2) + c2n ≤ 2C · n
2

log(n/2) + c2n

= Cn(log(n)− 1) + c2n = Cn log(n) + (c2 − C )n.

This is at most Cn log n as long as we choose C ≥ c2. X

John Lapinskas Lecture 27 March 16th 2020 7 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Requires C ≥ c2. X

So we have proved T (n) ≤ (c1 + c2) log n for all n ≥ 2.

This implies T (n) = O(n log n), as we were hoping.

But what if n isn’t a power of 2?

For a back-of-the-envelope calculation, we’d just say T (n) ≤ T (N) where
N is the nearest power of two. But sometimes this might be false...

John Lapinskas Lecture 27 March 16th 2020 8 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Requires C ≥ c2. X

So we have proved T (n) ≤ (c1 + c2) log n for all n ≥ 2.

This implies T (n) = O(n log n), as we were hoping.

But what if n isn’t a power of 2?

For a back-of-the-envelope calculation, we’d just say T (n) ≤ T (N) where
N is the nearest power of two. But sometimes this might be false...

John Lapinskas Lecture 27 March 16th 2020 8 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Requires C ≥ c2. X

So we have proved T (n) ≤ (c1 + c2) log n for all n ≥ 2.

This implies T (n) = O(n log n), as we were hoping.

But what if n isn’t a power of 2?

For a back-of-the-envelope calculation, we’d just say T (n) ≤ T (N) where
N is the nearest power of two. But sometimes this might be false...

John Lapinskas Lecture 27 March 16th 2020 8 / 14



The substitution method

T (1) ≤ c1,

T (n) ≤ 2T (n/2) + c2n for all n > 1.

Step 3: Prove by induction that T (n) ≤ Cn log n for all n ≥ 2.

Base case n = 2: Requires C ≥ c1 + c2. X

Inductive step: Requires C ≥ c2. X

So we have proved T (n) ≤ (c1 + c2) log n for all n ≥ 2.

This implies T (n) = O(n log n), as we were hoping.

But what if n isn’t a power of 2?

For a back-of-the-envelope calculation, we’d just say T (n) ≤ T (N) where
N is the nearest power of two. But sometimes this might be false...

John Lapinskas Lecture 27 March 16th 2020 8 / 14



Dealing with floors and ceilings

The “real” recurrence for mergesort is

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T (n) ≤ Cn log(n) + a for all n ≥ 2.

Base case n = 2:

As before, T (2) ≤ 2T (1) + 2c2 ≤ 2(c1 + c2).
Also, we have C · 2 log(2) + a = 2C + a.

So the base case works whenever 2C + a ≥ 2(c1 + c2). X

John Lapinskas Lecture 27 March 16th 2020 9 / 14



Dealing with floors and ceilings

The “real” recurrence for mergesort is

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T (n) ≤ Cn log(n) + a for all n ≥ 2.

Base case n = 2:

As before, T (2) ≤ 2T (1) + 2c2 ≤ 2(c1 + c2).

Also, we have C · 2 log(2) + a = 2C + a.

So the base case works whenever 2C + a ≥ 2(c1 + c2). X

John Lapinskas Lecture 27 March 16th 2020 9 / 14



Dealing with floors and ceilings

The “real” recurrence for mergesort is

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T (n) ≤ Cn log(n) + a for all n ≥ 2.

Base case n = 2:

As before, T (2) ≤ 2T (1) + 2c2 ≤ 2(c1 + c2).
Also, we have C · 2 log(2) + a = 2C + a.

So the base case works whenever 2C + a ≥ 2(c1 + c2). X

John Lapinskas Lecture 27 March 16th 2020 9 / 14



Dealing with floors and ceilings

The “real” recurrence for mergesort is

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

To deal with floors and ceilings, our guess needs an additive term.
Let’s try to find C and a such that T (n) ≤ Cn log(n) + a for all n ≥ 2.

Base case n = 2:

As before, T (2) ≤ 2T (1) + 2c2 ≤ 2(c1 + c2).
Also, we have C · 2 log(2) + a = 2C + a.

So the base case works whenever 2C + a ≥ 2(c1 + c2). X

John Lapinskas Lecture 27 March 16th 2020 9 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We have

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n

≤ C
(⌊n

2

⌋
log(bn/2c) +

⌈n
2

⌉
log(dn/2e)

)
+ 2a + c2n.

To deal with floors and ceilings, we normally use these bounds:

bxc ≤ x for all x ∈ R, dxe ≤ x+1 for all x ∈ R, dxe ≤ 2x for all x ≥ 1.

Using the “right” bounds in the “right” expressions:

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

John Lapinskas Lecture 27 March 16th 2020 10 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a.

We have

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n

≤ C
(⌊n

2

⌋
log(bn/2c) +

⌈n
2

⌉
log(dn/2e)

)
+ 2a + c2n.

To deal with floors and ceilings, we normally use these bounds:

bxc ≤ x for all x ∈ R, dxe ≤ x+1 for all x ∈ R, dxe ≤ 2x for all x ≥ 1.

Using the “right” bounds in the “right” expressions:

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

John Lapinskas Lecture 27 March 16th 2020 10 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We have

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n

≤ C
(⌊n

2

⌋
log(bn/2c) +

⌈n
2

⌉
log(dn/2e)

)
+ 2a + c2n.

To deal with floors and ceilings, we normally use these bounds:

bxc ≤ x for all x ∈ R, dxe ≤ x+1 for all x ∈ R, dxe ≤ 2x for all x ≥ 1.

Using the “right” bounds in the “right” expressions:

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

John Lapinskas Lecture 27 March 16th 2020 10 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We have

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n

≤ C
(⌊n

2

⌋
log(bn/2c) +

⌈n
2

⌉
log(dn/2e)

)
+ 2a + c2n.

To deal with floors and ceilings, we normally use these bounds:

bxc ≤ x for all x ∈ R, dxe ≤ x+1 for all x ∈ R, dxe ≤ 2x for all x ≥ 1.

Using the “right” bounds in the “right” expressions:

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

John Lapinskas Lecture 27 March 16th 2020 10 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We have

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n

≤ C
(⌊n

2

⌋
log(bn/2c) +

⌈n
2

⌉
log(dn/2e)

)
+ 2a + c2n.

To deal with floors and ceilings, we normally use these bounds:

bxc ≤ x for all x ∈ R, dxe ≤ x+1 for all x ∈ R, dxe ≤ 2x for all x ≥ 1.

Using the “right” bounds in the “right” expressions:

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

John Lapinskas Lecture 27 March 16th 2020 10 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We showed

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

We also bound log(n/2) ≤ log(n) to make the algebra a bit easier.
Then rearranging gives:

T (n) ≤ Cn log(n) + log(n) + 2a + c2n

This is at most Cn log(n) as long as we take a ≤ −(log(n) + c2n)/2. X

John Lapinskas Lecture 27 March 16th 2020 11 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We showed

T (n) ≤ C
(n

2
log(n/2) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

We also bound log(n/2) ≤ log(n) to make the algebra a bit easier.

Then rearranging gives:

T (n) ≤ Cn log(n) + log(n) + 2a + c2n

This is at most Cn log(n) as long as we take a ≤ −(log(n) + c2n)/2. X

John Lapinskas Lecture 27 March 16th 2020 11 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We showed

T (n) ≤ C
(n

2
log(n) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

We also bound log(n/2) ≤ log(n) to make the algebra a bit easier.

Then rearranging gives:

T (n) ≤ Cn log(n) + log(n) + 2a + c2n

This is at most Cn log(n) as long as we take a ≤ −(log(n) + c2n)/2. X

John Lapinskas Lecture 27 March 16th 2020 11 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Suppose that for all 2 ≤ n′ < n, T (n′) ≤ Cn′ log n′ + a.
Then we must prove T (n) ≤ Cn log n + a. We showed

T (n) ≤ C
(n

2
log(n) +

(n
2

+ 1
)

log(n)
)

+ 2a + c2n.

We also bound log(n/2) ≤ log(n) to make the algebra a bit easier.
Then rearranging gives:

T (n) ≤ Cn log(n) + log(n) + 2a + c2n

This is at most Cn log(n) as long as we take a ≤ −(log(n) + c2n)/2. X
John Lapinskas Lecture 27 March 16th 2020 11 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Requires a ≤ −(log(n) + c2n)/2. X

So all that’s left is to pick C and a that work.

If we take a(n) = −(log(n) + c2n)/2, then the inductive step works and
a(2) = −1

2 − c2.

So to make the base case work, we take

C = c1 + c2 −
a

2
= c1 +

3

2
c2 +

1

4
> 0.

(Note we do need C > 0 here!)

John Lapinskas Lecture 27 March 16th 2020 12 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Requires a ≤ −(log(n) + c2n)/2. X

So all that’s left is to pick C and a that work.

If we take a(n) = −(log(n) + c2n)/2, then the inductive step works and
a(2) = −1

2 − c2.

So to make the base case work, we take

C = c1 + c2 −
a

2
= c1 +

3

2
c2 +

1

4
> 0.

(Note we do need C > 0 here!)

John Lapinskas Lecture 27 March 16th 2020 12 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

Goal: Prove by induction that for all n ≥ 2, T (n) ≤ Cn log(n) + a.

Base case n = 2: Requires 2C + a ≥ 2(c1 + c2). X

Inductive step: Requires a ≤ −(log(n) + c2n)/2. X

So all that’s left is to pick C and a that work.

If we take a(n) = −(log(n) + c2n)/2, then the inductive step works and
a(2) = −1

2 − c2.

So to make the base case work, we take

C = c1 + c2 −
a

2
= c1 +

3

2
c2 +

1

4
> 0.

(Note we do need C > 0 here!)
John Lapinskas Lecture 27 March 16th 2020 12 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

We proved: Let C = c1 + 3
2c2 + 1

4 , and let a(n) = −1
2(c2n + log(n)).

Then T (n) ≤ Cn log(n) + a(n) for all n ≥ 2.

In particular, this implies T (n) = O(n log n) as before. Phew!

Note we proved something stronger than T (n) ≤ Cn log(n) for all n ≥ 2.
And yet, if we’d tried the proof with a(n) = 0, it wouldn’t have worked!

It’s counterintuitive, but if you’re having trouble with an induction,
strengthening your inductive hypothesis can be very helpful.

John Lapinskas Lecture 27 March 16th 2020 13 / 14



Dealing with floors and ceilings

T (1) ≤ c1,

T (n) ≤ T (bn/2c) + T (dn/2e) + c2n for all n ≥ 2.

We proved: Let C = c1 + 3
2c2 + 1

4 , and let a(n) = −1
2(c2n + log(n)).

Then T (n) ≤ Cn log(n) + a(n) for all n ≥ 2.

In particular, this implies T (n) = O(n log n) as before. Phew!

Note we proved something stronger than T (n) ≤ Cn log(n) for all n ≥ 2.
And yet, if we’d tried the proof with a(n) = 0, it wouldn’t have worked!

It’s counterintuitive, but if you’re having trouble with an induction,
strengthening your inductive hypothesis can be very helpful.

John Lapinskas Lecture 27 March 16th 2020 13 / 14



Next time: More examples!
(Lecture to be given online...)

John Lapinskas Lecture 27 March 16th 2020 14 / 14


