Lecture 19: Peak Finding in 2D COMS10007 - Algorithms

Dr. Christian Konrad

04.05.2020

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Peak Finding

Let A be an n-by- m matrix of integers

$$
A=\left(\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \ldots & A_{1 m} \\
A_{21} & \ddots & & & \\
A_{31} & & \ddots & & \\
\vdots & & & \ddots & \\
A_{n 1} & A_{n 2} & A_{n 3} & \ldots & A_{n m}
\end{array}\right)
$$

Definition: (Peak in 2D)
Integer $A_{i j}$ is a peak if adjacent integers are not larger than $A_{i j}$

Example and Trivial Algorithm

How many peaks are contained in this matrix?

$$
\left(\begin{array}{cccc}
1 & 5 & 8 & 3 \\
2 & 1 & 8 & 9 \\
3 & 1 & 1 & 2 \\
7 & 7 & 8 & 10 \\
2 & 1 & 1 & 1
\end{array}\right)
$$

Trivial Algorithm

- For each position i, j, check whether $A_{i, j}$ is a peak
- There are $n \cdot m$ positions
- Checking whether $A_{i, j}$ is a peak takes time $O(1)$
- Runtime: $O(n m)$

How can we do better?

Example and Trivial Algorithm

How many peaks are contained in this matrix?

$$
\left(\begin{array}{cccc}
1 & 5 & 8 & 3 \\
2 & 1 & 8 & 9 \\
3 & 1 & 1 & 2 \\
7 & 7 & 8 & 10 \\
2 & 1 & 1 & 1
\end{array}\right)
$$

Trivial Algorithm

- For each position i, j, check whether $A_{i, j}$ is a peak
- There are $n \cdot m$ positions
- Checking whether $A_{i, j}$ is a peak takes time $O(1)$
- Runtime: $O(n m)$

How can we do better?

Divide-and-Conquer Solution

Divide-and-Conquer

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.

1D Peak Finding

Divide-and-Conquer in 1D: FAST-PEAK-Finding
(1) Check whether $A[\lfloor n / 2\rfloor]$ is a peak, if yes then return $A[\lfloor n / 2\rfloor]$
(2) Else, if $A[\lfloor n / 2\rfloor-1]>A[\lfloor n / 2\rfloor]$ then recursively find a peak in $A[0,\lfloor n / 2\rfloor-1]$
(3) Else, recursively find a peak in $A[\lfloor n / 2\rfloor+1, n-1]$

Crucial Property

Crucial Property:

When recursing on subarray, need to make sure that peak in subarray is also peak in initial array

Example:

$$
A=1 \begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

- Algorithm first inspects 5 and recurses on right half

$$
6 \quad 78
$$

Will eventually find the only peak 8

- Suppose we recursed on left half

$$
\begin{array}{ccccc}
& & \begin{array}{c}
1 \\
2
\end{array} & 3 & 4
\end{array}
$$

2D Peak Finding

Divide-and-Conquer: Divide step

- Find maximum among central column and boundary
- If it is not a peak, conquer either on left or right half

$$
\left(\begin{array}{ccccccc}
A_{11} & \ldots & A_{1, \frac{m}{2}-1} & A_{1, \frac{m}{2}} & A_{1, \frac{m}{2}+1} & \ldots & A_{1 m} \\
A_{21} & \ldots & A_{2, \frac{m}{2}-1} & A_{2, \frac{m}{2}} & A_{2, \frac{m}{2}+1} & \ldots & A_{2 m} \\
\vdots & & & \vdots & & & \vdots \\
A_{n-1,1} & \ldots & A_{n-1, \frac{m}{2}-1} & A_{n-1, \frac{m}{2}} & A_{n-1, \frac{m}{2}+1} & \ldots & A_{n-1, m} \\
A_{n, 1} & \ldots & A_{n, \frac{m}{2}-1} & A_{n, \frac{m}{2}} & A_{n, \frac{m}{2}+1} & \ldots & A_{n, m}
\end{array}\right)
$$

- In each recursive call, matrix size halves (at least)
- Hence $O(\log (m n))$ recursive calls
- In each call: $O(n+m)$, thus in total $O((n+m) \log (n m))$
- Can be improved to $O(n+m)$!

2D Peak Finding

Divide-and-Conquer: Divide step

- Find maximum among central column and boundary
- If it is not a peak, conquer either on left or right half

$$
\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1, \frac{m}{2}-1} \\
A_{21} & \ldots & A_{2, \frac{m}{2}-1} \\
\vdots & & \\
A_{n-1,1} & \ldots & A_{n-1, \frac{m}{2}-1} \\
A_{n, 1} & \ldots & A_{n, \frac{m}{2}-1}
\end{array}\right)
$$

- In each recursive call, matrix size halves (at least)
- Hence $O(\log (m n))$ recursive calls
- In each call: $O(n+m)$, thus in total $O((n+m) \log (n m))$
- Can be improved to $O(n+m)$!

Recursion on which side?

Recursion on which side?

- Since maximum not a peak, a not considered neighbor larger
- Recurse on the side that contains this larger neighbor

$$
\left(\begin{array}{ccccccc}
A_{11} & \ldots & A_{1, \frac{m}{2}-1} & A_{1, \frac{m}{2}} & A_{1, \frac{m}{2}+1} & \ldots & A_{1 m} \\
A_{21} & \ldots & A_{2, \frac{m}{2}-1} & A_{2, \frac{m}{2}} & A_{2, \frac{m}{2}+1} & \ldots & A_{2 m} \\
\vdots & & & \vdots & & & \vdots \\
A_{n-1,1} & \ldots & A_{n-1, \frac{m}{2}-1} & A_{n-1, \frac{m}{2}} & A_{n-1, \frac{m}{2}+1} & \ldots & A_{n-1, m} \\
A_{n, 1} & \ldots & A_{n, \frac{m}{2}-1} & A_{n, \frac{m}{2}} & A_{n, \frac{m}{2}+1} & \ldots & A_{n, m}
\end{array}\right)
$$

Recursion on which side?

Recursion on which side?

- Since maximum not a peak, a not considered neighbor larger
- Recurse on the side that contains this larger neighbor

$$
\left(\begin{array}{ccccccc}
A_{11} & \ldots & A_{1, \frac{m}{2}-1} & A_{1, \frac{m}{2}} & A_{1, \frac{m}{2}+1} & \ldots & A_{1 m} \\
A_{21} & \ldots & A_{2, \frac{m}{2}-1} & A_{2, \frac{m}{2}} & A_{2, \frac{m}{2}+1} & \ldots & A_{2 m} \\
\vdots & & & \vdots & & & \vdots \\
A_{n-1,1} & \ldots & A_{n-1, \frac{m}{2}-1} & A_{n-1, \frac{m}{2}} & A_{n-1, \frac{m}{2}+1} & \ldots & A_{n-1, m} \\
A_{n, 1} & \ldots & A_{n, \frac{m}{2}-1} & A_{n, \frac{m}{2}} & \mathbf{A}_{n, \frac{m}{2}+1} & \ldots & A_{n, m}
\end{array}\right)
$$

Recursion on which side?

Recursion on which side?

- Since maximum not a peak, a not considered neighbor larger
- Recurse on the side that contains this larger neighbor

$$
\left(\begin{array}{ccccccc}
A_{11} & \ldots & A_{1, \frac{m}{2}-1} & A_{1, \frac{m}{2}} & A_{1, \frac{m}{2}+1} & \ldots & A_{1 m} \\
A_{21} & \ldots & A_{2, \frac{m}{2}-1} & A_{2, \frac{m}{2}} & A_{2, \frac{m}{2}+1} & \ldots & A_{2 m} \\
\vdots & & & \vdots & & & \vdots \\
A_{n-1,1} & \ldots & A_{n-1, \frac{m}{2}-1} & A_{n-1, \frac{m}{2}} & A_{n-1, \frac{m}{2}+1} & \ldots & A_{n-1, m} \\
A_{n, 1} & \ldots & A_{n, \frac{m}{2}-1} & A_{n, \frac{m}{2}} & A_{n, \frac{m}{2}+1} & \ldots & A_{n, m}
\end{array}\right)
$$

Why Does it Work?

Correctness:

- Suppose algorithm finds peak in a submatrix A^{\prime}
- Why is this also a peak in A ?

$$
\left(\begin{array}{ccccccc}
A_{11}^{\prime} & \cdots & A_{1,, \frac{m^{\prime}}{2}-1}^{\prime} & A_{1, \frac{m^{\prime}}{2}}^{\prime} & A_{1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{1 m^{\prime}}^{\prime} \\
A_{21}^{\prime} & \cdots & A_{2, \frac{m^{\prime}}{2}-1}^{\prime} & \mathbf{A}_{2, \frac{m^{\prime}}{2}}^{\prime} & A_{2, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{2 m^{\prime}}^{\prime} \\
\vdots & & & \vdots & & & \vdots \\
A_{n^{\prime}-1,1}^{\prime} & \ldots & A_{n^{\prime}-1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}-1, m^{\prime}}^{\prime} \\
A_{n^{\prime}, 1}^{\prime} & \cdots & A_{n^{\prime}, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}, m^{\prime}}^{\prime}
\end{array}\right)
$$

First Case: Peak is in central column of A^{\prime}

Why Does it Work?

Correctness:

- Suppose algorithm finds peak in a submatrix A^{\prime}
- Why is this also a peak in A ?

$$
\left(\begin{array}{ccccccc}
A_{11}^{\prime} & \cdots & A_{1,, \frac{m^{\prime}}{2}-1}^{\prime} & A_{1, \frac{m^{\prime}}{2}}^{\prime} & A_{1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{1 m^{\prime}}^{\prime} \\
A_{21}^{\prime} & \cdots & A_{2, \frac{m^{\prime}}{2}-1}^{\prime} & \mathbf{A}_{2, \frac{m^{\prime}}{2}}^{\prime} & A_{2, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{2 m^{\prime}}^{\prime} \\
\vdots & & & \vdots & & & \vdots \\
A_{n^{\prime}-1,1}^{\prime} & \ldots & A_{n^{\prime}-1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}-1, m^{\prime}}^{\prime} \\
A_{n^{\prime}, 1}^{\prime} & \cdots & A_{n^{\prime}, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}, m^{\prime}}^{\prime}
\end{array}\right)
$$

First Case: Peak is in central column of $A^{\prime} \checkmark$

Why Does it Work?

Correctness:

- Suppose algorithm finds peak in a submatrix A^{\prime}
- Why is this also a peak in A ?

$$
\left(\begin{array}{ccccccc}
A_{11}^{\prime} & \cdots & \mathbf{A}_{1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{1, \frac{m^{\prime}}{2}}^{\prime} & A_{1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{1 m^{\prime}}^{\prime} \\
A_{21}^{\prime} & \cdots & A_{2, \frac{m^{\prime}}{2}-1}^{\prime} & A_{2, \frac{m^{\prime}}{2}}^{\prime} & A_{2, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{2 m^{\prime}}^{\prime} \\
\vdots & & & \vdots & & & \vdots \\
A_{n^{\prime}-1,1}^{\prime} & \cdots & A_{n^{\prime}-1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}-1, m^{\prime}}^{\prime} \\
A_{n^{\prime}, 1}^{\prime} & \cdots & A_{n^{\prime}, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}, m^{\prime}}^{\prime}
\end{array}\right)
$$

First Case: Peak is in central column of $A^{\prime} \checkmark$
Second Case: Peak in bottom or top boundary of A^{\prime}

Why Does it Work?

Correctness:

- Suppose algorithm finds peak in a submatrix A^{\prime}
- Why is this also a peak in A ?

$$
\left(\begin{array}{ccccccc}
A_{11}^{\prime} & \cdots & \mathbf{A}_{1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{1, \frac{m^{\prime}}{2}}^{\prime} & A_{1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{1 m^{\prime}}^{\prime} \\
A_{21}^{\prime} & \cdots & A_{2, \frac{m^{\prime}}{2}-1}^{\prime} & A_{2, \frac{m^{\prime}}{2}}^{\prime} & A_{2, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{2 m^{\prime}}^{\prime} \\
\vdots & & & \vdots & & & \vdots \\
A_{n^{\prime}-1,1}^{\prime} & \cdots & A_{n^{\prime}-1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}-1, m^{\prime}}^{\prime} \\
A_{n^{\prime}, 1}^{\prime} & \cdots & A_{n^{\prime}, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}, m^{\prime}}^{\prime}
\end{array}\right)
$$

First Case: Peak is in central column of $A^{\prime} \checkmark$
Second Case: Peak in bottom or top boundary of A^{\prime}
Only happens in first iteration

Why Does it Work?

Correctness:

- Suppose algorithm finds peak in a submatrix A^{\prime}
- Why is this also a peak in A ?

$$
\left(\begin{array}{ccccccc}
A_{11}^{\prime} & \cdots & \mathbf{A}_{1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{1, \frac{m^{\prime}}{2}}^{\prime} & A_{1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{1 m^{\prime}}^{\prime} \\
A_{21}^{\prime} & \cdots & A_{2, \frac{m^{\prime}}{2}-1}^{\prime} & A_{2, \frac{m^{\prime}}{2}}^{\prime} & A_{2, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{2 m^{\prime}}^{\prime} \\
\vdots & & & \vdots & & & \vdots \\
A_{n^{\prime}-1,1}^{\prime} & \cdots & A_{n^{\prime}-1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}-1, m^{\prime}}^{\prime} \\
A_{n^{\prime}, 1}^{\prime} & \cdots & A_{n^{\prime}, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{n^{\prime}, m^{\prime}}^{\prime}
\end{array}\right)
$$

First Case: Peak is in central column of $A^{\prime} \checkmark$
Second Case: Peak in bottom or top boundary of A^{\prime} Only happens in first iteration \checkmark

Why Does it Work? (2)

Peak in Left or Right Boundary of A^{\prime} :

$$
\left(\begin{array}{ccccccc}
A_{11}^{\prime} & \ldots & A_{1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{1, \frac{m^{\prime}}{2}}^{\prime} & A_{1, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{1 m^{\prime}}^{\prime} \\
A_{21}^{\prime} & \ldots & A_{2, \frac{m^{\prime}}{2}-1}^{\prime} & A_{2, \frac{m^{\prime}}{2}}^{\prime} & A_{2, \frac{m^{\prime}}{2}+1}^{\prime} & \cdots & A_{2 m^{\prime}}^{\prime} \\
\vdots & & & \vdots & & & \vdots \\
A_{n^{\prime}-1,1}^{\prime} & \ldots & A_{n^{\prime}-1, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}-1, \frac{m^{\prime}}{2}+1}^{\prime} & \ldots & A_{n^{\prime}-1, m^{\prime}}^{\prime} \\
A_{n^{\prime}, 1}^{\prime} & \ldots & A_{n^{\prime}, \frac{m^{\prime}}{2}-1}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}}^{\prime} & A_{n^{\prime}, \frac{m^{\prime}}{2}+1}^{\prime} & \ldots & A_{n^{\prime}, m^{\prime}}^{\prime}
\end{array}\right)
$$

- Need to make sure that $\mathbf{A}_{\mathbf{n}^{\prime}-\mathbf{1 , 1}}^{\prime}$ is not smaller than element left of it in A (if it exists)
- Observe: Element left of it is in central column of a matrix that was considered earlier

Key Lemma

Lemma

Let $A=A_{1}, A_{2}, A_{3}, \ldots$ be the sequence of matrices considered by the algorithm. Let m_{i} be the maximum of the central column and the boundary in A_{i}. Then:

$$
m_{i+1} \geq m_{i}
$$

Proof. If m_{i} is in bottom/top/left/right boundary (excluding the elements that are also in central column) of A_{i}, then m_{i} is also in boundary of A_{i+1}. Hence, $m_{i+1} \geq m_{i}$.
Suppose m_{i} is in central column. Since it is not a peak, either left or right element is larger. Let this element be x. Hence, $x>m_{i}$. Observe that x is in boundary of A_{i+1}. Since $m_{i+1} \geq x$, we conclude $m_{i+1}>m_{i} . \quad \square$
\rightarrow Peak found in left or right column in A^{\prime} is also peak in $A!$ (establishes correctness of algorithm)

Summary

Peak Finding in 2D

- Divide and conquer algorithm
- Finds a peak in time $O((m+n) \log (m n))$ on an n-by- m matrix
- For square $(n$-by- $n)$ matrices, this is $O\left(n \log \left(n^{2}\right)\right)=O(n \log n)$

Improvement (for simplicity suppose that A is an n-by- n matrix)

- If $\#$ columns $\geq \#$ rows then recurse horizontally as before
- If \# columns $<\#$ rows then recurse vertically

Observe:

- Vertical and horizontal splits alternate
- After two recursions we have $n^{\prime}-$ by $-n^{\prime}$ matrix with $n^{\prime}<n / 2$

Runtime of Improved Algorithm

Analysis: (sketch)

- In iteration 1, matrix is of size n-by- n
- In iteration 3, matrix is of size at most $n / 2$-by $n / 2$
- In iteration 5 , matrix is of size at most $n / 4$-by $n / 4$
- ...

Runtime $\leq \sum_{i=1}^{\log \left(n^{2}\right)}$ Runtime in it. $i \leq 2 \cdot \sum_{i=1,3,5,7, \ldots}^{2 \log n}$ Runtime in it. i
$=2 \cdot \sum_{i=1}^{\log n}$ Runtime on matrix with dimensions $n / 2^{i-1} \times n / 2^{i-1}$
$=2 \cdot \sum_{i=1}^{\log n} O\left(n / 2^{i-1}\right)=O(n) \sum_{i=1}^{\log n} O\left(\frac{1}{2^{i-1}}\right)=O(n) \cdot O(1)=O(n)$.

Exercise

Difficult Exercise:

Suppose that n-by- n matrix A contains exactly two peaks. Can we find both peaks faster than in time $O\left(n^{2}\right)$?

