Lecture 19: Peak Finding in 2D COMS10007 - Algorithms

Dr. Christian Konrad

04.05.2020

Peak Finding

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Example:

Peak Finding

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

0	1	2	3	4	5	6	7	8	9
<i>a</i> ₀	a_1	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅	<i>a</i> ₆	a ₇	<i>a</i> ₈	a 9

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Example:

Peak Finding

Let A be an n-by-m matrix of integers

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1m} \\ A_{21} & \ddots & & & & \\ A_{31} & & \ddots & & & \\ \vdots & & & \ddots & & \\ A_{n1} & A_{n2} & A_{n3} & \dots & A_{nm} \end{pmatrix}$$

Definition: (Peak in 2D)

Integer A_{ij} is a peak if adjacent integers are not larger than A_{ij}

Example and Trivial Algorithm

How many peaks are contained in this matrix?

$$\begin{pmatrix}
1 & 5 & 8 & 3 \\
2 & 1 & 8 & 9 \\
3 & 1 & 1 & 2 \\
7 & 7 & 8 & 10 \\
2 & 1 & 1 & 1
\end{pmatrix}$$

Trivial Algorithm

- For each position i, j, check whether $A_{i,j}$ is a peak
- There are $n \cdot m$ positions
- Checking whether $A_{i,j}$ is a peak takes time O(1)
- Runtime: O(nm)

How can we do better?

Example and Trivial Algorithm

How many peaks are contained in this matrix?

$$\begin{pmatrix}
1 & 5 & 8 & 3 \\
2 & 1 & 8 & 9 \\
3 & 1 & 1 & 2 \\
7 & 7 & 8 & 10 \\
2 & 1 & 1 & 1
\end{pmatrix}$$

Trivial Algorithm

- For each position i, j, check whether $A_{i,j}$ is a peak
- There are $n \cdot m$ positions
- Checking whether $A_{i,j}$ is a peak takes time O(1)
- Runtime: O(nm)

How can we do better?

Divide-and-Conquer Solution

Divide-and-Conquer

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

1D Peak Finding

Divide-and-Conquer in 1D: Fast-Peak-Finding

- Check whether $A[\lfloor n/2 \rfloor]$ is a peak, if yes then return $A[\lfloor n/2 \rfloor]$
- ② Else, if $A[\lfloor n/2 \rfloor 1] > A[\lfloor n/2 \rfloor]$ then recursively find a peak in $A[0, \lfloor n/2 \rfloor 1]$
- **3** Else, recursively find a peak in $A[\lfloor n/2 \rfloor + 1, n-1]$

Crucial Property

Crucial Property:

When recursing on subarray, need to make sure that peak in subarray is also peak in initial array

Example:

• Algorithm first inspects 5 and recurses on right half

6 7 **8**

Will eventually find the only peak 8

• Suppose we recursed on left half

1 2 3 **4**

Peak in $1 \ 2 \ 3 \ 4$ is not a peak in A!

2D Peak Finding

Divide-and-Conquer: Divide step

- Find maximum among central column and boundary
- If it is not a peak, conquer either on left or right half

$$\begin{pmatrix} A_{11} & \cdots & A_{1,\frac{m}{2}-1} & A_{1,\frac{m}{2}} & A_{1,\frac{m}{2}+1} & \cdots & A_{1m} \\ A_{21} & \cdots & A_{2,\frac{m}{2}-1} & A_{2,\frac{m}{2}} & A_{2,\frac{m}{2}+1} & \cdots & A_{2m} \\ \vdots & & & \vdots & & & \vdots \\ A_{n-1,1} & \cdots & A_{n-1,\frac{m}{2}-1} & A_{n-1,\frac{m}{2}} & A_{n-1,\frac{m}{2}+1} & \cdots & A_{n-1,m} \\ A_{n,1} & \cdots & A_{n,\frac{m}{2}-1} & A_{n,\frac{m}{2}} & A_{n,\frac{m}{2}+1} & \cdots & A_{n,m} \end{pmatrix}$$

- In each recursive call, matrix size halves (at least)
- Hence $O(\log(mn))$ recursive calls
- In each call: O(n+m), thus in total $O((n+m)\log(nm))$
- Can be improved to O(n+m)!

2D Peak Finding

Divide-and-Conquer: Divide step

- Find maximum among central column and boundary
- If it is not a peak, conquer either on left or right half

$$\begin{pmatrix} A_{11} & \cdots & A_{1,\frac{m}{2}-1} \\ A_{21} & \cdots & A_{2,\frac{m}{2}-1} \\ \vdots & & & \\ A_{n-1,1} & \cdots & A_{n-1,\frac{m}{2}-1} \\ A_{n,1} & \cdots & A_{n,\frac{m}{2}-1} \end{pmatrix}$$

- In each recursive call, matrix size halves (at least)
- Hence $O(\log(mn))$ recursive calls
- In each call: O(n+m), thus in total $O((n+m)\log(nm))$
- Can be improved to O(n+m)!

Recursion on which side?

Recursion on which side?

- Since maximum not a peak, a not considered neighbor larger
- Recurse on the side that contains this larger neighbor

$$\begin{pmatrix} A_{11} & \dots & A_{1,\frac{m}{2}-1} & A_{1,\frac{m}{2}} & A_{1,\frac{m}{2}+1} & \dots & A_{1m} \\ A_{21} & \dots & A_{2,\frac{m}{2}-1} & A_{2,\frac{m}{2}} & A_{2,\frac{m}{2}+1} & \dots & A_{2m} \\ \vdots & & & \vdots & & \vdots \\ A_{n-1,1} & \dots & A_{n-1,\frac{m}{2}-1} & A_{n-1,\frac{m}{2}} & A_{n-1,\frac{m}{2}+1} & \dots & A_{n-1,m} \\ A_{n,1} & \dots & A_{n,\frac{m}{2}-1} & A_{n,\frac{m}{2}} & A_{n,\frac{m}{2}+1} & \dots & A_{n,m} \end{pmatrix}$$

Recursion on which side?

Recursion on which side?

- Since maximum not a peak, a not considered neighbor larger
- Recurse on the side that contains this larger neighbor

$$\begin{pmatrix} A_{11} & \dots & A_{1,\frac{m}{2}-1} & A_{1,\frac{m}{2}} & A_{1,\frac{m}{2}+1} & \dots & A_{1m} \\ A_{21} & \dots & A_{2,\frac{m}{2}-1} & A_{2,\frac{m}{2}} & A_{2,\frac{m}{2}+1} & \dots & A_{2m} \\ \vdots & & & \vdots & & & \vdots \\ A_{n-1,1} & \dots & A_{n-1,\frac{m}{2}-1} & A_{n-1,\frac{m}{2}} & A_{n-1,\frac{m}{2}+1} & \dots & A_{n-1,m} \\ A_{n,1} & \dots & A_{n,\frac{m}{2}-1} & A_{n,\frac{m}{2}} & A_{n,\frac{m}{2}+1} & \dots & A_{n,m} \end{pmatrix}$$

Recursion on which side?

Recursion on which side?

- Since maximum not a peak, a not considered neighbor larger
- Recurse on the side that contains this larger neighbor

$$\begin{pmatrix} A_{11} & \dots & A_{1,\frac{m}{2}-1} & A_{1,\frac{m}{2}} & A_{1,\frac{m}{2}+1} & \dots & A_{1m} \\ A_{21} & \dots & A_{2,\frac{m}{2}-1} & \mathbf{A}_{2,\frac{m}{2}} & A_{2,\frac{m}{2}+1} & \dots & A_{2m} \\ \vdots & & & \vdots & & & \vdots \\ A_{n-1,1} & \dots & A_{n-1,\frac{m}{2}-1} & A_{n-1,\frac{m}{2}} & A_{n-1,\frac{m}{2}+1} & \dots & A_{n-1,m} \\ A_{n,1} & \dots & A_{n,\frac{m}{2}-1} & A_{n,\frac{m}{2}} & A_{n,\frac{m}{2}+1} & \dots & A_{n,m} \end{pmatrix}$$

Correctness:

- Suppose algorithm finds peak in a submatrix A'
- Why is this also a peak in A?

$$\begin{pmatrix} A'_{11} & \dots & A'_{1,\frac{m'}{2}-1} & A'_{1,\frac{m'}{2}} & A'_{1,\frac{m'}{2}+1} & \dots & A'_{1m'} \\ A'_{21} & \dots & A'_{2,\frac{m'}{2}-1} & \mathbf{A'}_{2,\frac{m'}{2}} & A'_{2,\frac{m'}{2}+1} & \dots & A'_{2m'} \\ \vdots & & & \vdots & & \vdots \\ A'_{n'-1,1} & \dots & A'_{n'-1,\frac{m'}{2}-1} & A'_{n'-1,\frac{m'}{2}} & A'_{n'-1,\frac{m'}{2}+1} & \dots & A'_{n'-1,m'} \\ A'_{n',1} & \dots & A'_{n',\frac{m'}{2}-1} & A'_{n',\frac{m'}{2}} & A'_{n',\frac{m'}{2}+1} & \dots & A'_{n',m'} \end{pmatrix}$$

First Case: Peak is in central column of A'

Correctness:

- Suppose algorithm finds peak in a submatrix A'
- Why is this also a peak in A?

$$\begin{pmatrix} A'_{11} & \dots & A'_{1,\frac{m'}{2}-1} & A'_{1,\frac{m'}{2}} & A'_{1,\frac{m'}{2}+1} & \dots & A'_{1m'} \\ A'_{21} & \dots & A'_{2,\frac{m'}{2}-1} & \mathbf{A'}_{2,\frac{m'}{2}} & A'_{2,\frac{m'}{2}+1} & \dots & A'_{2m'} \\ \vdots & & & \vdots & & & \vdots \\ A'_{n'-1,1} & \dots & A'_{n'-1,\frac{m'}{2}-1} & A'_{n'-1,\frac{m'}{2}} & A'_{n'-1,\frac{m'}{2}+1} & \dots & A'_{n'-1,m'} \\ A'_{n',1} & \dots & A'_{n',\frac{m'}{2}-1} & A'_{n',\frac{m'}{2}} & A'_{n',\frac{m'}{2}+1} & \dots & A'_{n',m'} \end{pmatrix}$$

First Case: Peak is in central column of $A' \checkmark$

Correctness:

- Suppose algorithm finds peak in a submatrix A'
- Why is this also a peak in A?

$$\begin{pmatrix} A'_{11} & \cdots & \mathbf{A}'_{1,\frac{m'}{2}-1} & A'_{1,\frac{m'}{2}} & A'_{1,\frac{m'}{2}+1} & \cdots & A'_{1m'} \\ A'_{21} & \cdots & A'_{2,\frac{m'}{2}-1} & A'_{2,\frac{m'}{2}} & A'_{2,\frac{m'}{2}+1} & \cdots & A'_{2m'} \\ \vdots & & & \vdots & & & \vdots \\ A'_{n'-1,1} & \cdots & A'_{n'-1,\frac{m'}{2}-1} & A'_{n'-1,\frac{m'}{2}} & A'_{n'-1,\frac{m'}{2}+1} & \cdots & A'_{n'-1,m'} \\ A'_{n',1} & \cdots & A'_{n',\frac{m'}{2}-1} & A'_{n',\frac{m'}{2}} & A'_{n',\frac{m'}{2}+1} & \cdots & A'_{n',m'} \end{pmatrix}$$

First Case: Peak is in central column of $A' \checkmark$

Second Case: Peak in bottom or top boundary of A'

Correctness:

- Suppose algorithm finds peak in a submatrix A'
- Why is this also a peak in A?

$$\begin{pmatrix} A'_{11} & \cdots & \mathbf{A}'_{1,\frac{m'}{2}-1} & A'_{1,\frac{m'}{2}} & A'_{1,\frac{m'}{2}+1} & \cdots & A'_{1m'} \\ A'_{21} & \cdots & A'_{2,\frac{m'}{2}-1} & A'_{2,\frac{m'}{2}} & A'_{2,\frac{m'}{2}+1} & \cdots & A'_{2m'} \\ \vdots & & & \vdots & & \vdots \\ A'_{n'-1,1} & \cdots & A'_{n'-1,\frac{m'}{2}-1} & A'_{n'-1,\frac{m'}{2}} & A'_{n'-1,\frac{m'}{2}+1} & \cdots & A'_{n'-1,m'} \\ A'_{n',1} & \cdots & A'_{n',\frac{m'}{2}-1} & A'_{n',\frac{m'}{2}} & A'_{n',\frac{m'}{2}+1} & \cdots & A'_{n',m'} \end{pmatrix}$$

First Case: Peak is in central column of $A' \checkmark$

Second Case: Peak in bottom or top boundary of A' Only happens in first iteration

Correctness:

- Suppose algorithm finds peak in a submatrix A'
- Why is this also a peak in A?

$$\begin{pmatrix} A'_{11} & \cdots & \mathbf{A}'_{1,\frac{m'}{2}-1} & A'_{1,\frac{m'}{2}} & A'_{1,\frac{m'}{2}+1} & \cdots & A'_{1m'} \\ A'_{21} & \cdots & A'_{2,\frac{m'}{2}-1} & A'_{2,\frac{m'}{2}} & A'_{2,\frac{m'}{2}+1} & \cdots & A'_{2m'} \\ \vdots & & & \vdots & & \vdots \\ A'_{n'-1,1} & \cdots & A'_{n'-1,\frac{m'}{2}-1} & A'_{n'-1,\frac{m'}{2}} & A'_{n'-1,\frac{m'}{2}+1} & \cdots & A'_{n'-1,m'} \\ A'_{n',1} & \cdots & A'_{n',\frac{m'}{2}-1} & A'_{n',\frac{m'}{2}} & A'_{n',\frac{m'}{2}+1} & \cdots & A'_{n',m'} \end{pmatrix}$$

First Case: Peak is in central column of $A' \checkmark$

Second Case: Peak in bottom or top boundary of A' Only happens in first iteration \checkmark

Why Does it Work? (2)

Peak in Left or Right Boundary of A':

$$\begin{pmatrix} A'_{11} & \dots & A'_{1,\frac{m'}{2}-1} & A'_{1,\frac{m'}{2}} & A'_{1,\frac{m'}{2}+1} & \dots & A'_{1m'} \\ A'_{21} & \dots & A'_{2,\frac{m'}{2}-1} & A'_{2,\frac{m'}{2}} & A'_{2,\frac{m'}{2}+1} & \dots & A'_{2m'} \\ \vdots & & \vdots & & \vdots & & \vdots \\ \mathbf{A}'_{n'-1,1} & \dots & A'_{n'-1,\frac{m'}{2}-1} & A'_{n'-1,\frac{m'}{2}} & A'_{n'-1,\frac{m'}{2}+1} & \dots & A'_{n'-1,m'} \\ A'_{n',1} & \dots & A'_{n',\frac{m'}{2}-1} & A'_{n',\frac{m'}{2}} & A'_{n',\frac{m'}{2}+1} & \dots & A'_{n',m'} \end{pmatrix}$$

- Need to make sure that $A'_{n'-1,1'}$ is not smaller than element left of it in A (if it exists)
- **Observe:** Element left of it is in central column of a matrix that was considered earlier

Key Lemma

Lemma

Let $A = A_1, A_2, A_3, ...$ be the sequence of matrices considered by the algorithm. Let m_i be the maximum of the central column and the boundary in A_i . Then:

$$m_{i+1} \geq m_i$$
.

Proof. If m_i is in bottom/top/left/right boundary (excluding the elements that are also in central column) of A_i , then m_i is also in boundary of A_{i+1} . Hence, $m_{i+1} \geq m_i$. Suppose m_i is in central column. Since it is not a peak, either left

or right element is larger. Let this element be x. Hence, $x > m_i$. Observe that x is in boundary of A_{i+1} . Since $m_{i+1} \ge x$, we conclude $m_{i+1} > m_i$. \square

 \rightarrow Peak found in left or right column in A' is also peak in A! (establishes correctness of algorithm)

Summary

Peak Finding in 2D

- Divide and conquer algorithm
- Finds a peak in time $O((m+n)\log(mn))$ on an n-by-m matrix
- For square (n-by-n) matrices, this is $O(n \log(n^2)) = O(n \log n)$

Improvement (for simplicity suppose that A is an n-by-n matrix)

- If # columns $\ge \#$ rows then recurse horizontally as before
- If # columns < # rows then recurse vertically

Observe:

- Vertical and horizontal splits alternate
- After two recursions we have n'-by-n' matrix with n' < n/2

Runtime of Improved Algorithm

Analysis: (sketch)

- In iteration 1, matrix is of size *n*-by-*n*
- In iteration 3, matrix is of size at most n/2-by-n/2
- In iteration 5, matrix is of size at most n/4-by-n/4
- . . .

Runtime
$$\leq \sum_{i=1}^{\log(n^2)}$$
 Runtime in it. $i \leq 2 \cdot \sum_{i=1,3,5,7,...}^{2\log n}$ Runtime in it. i

- $= 2 \cdot \sum_{i=1}^{\log n} \text{Runtime on matrix with dimensions } n/2^{i-1} \times n/2^{i-1}$
 - $= 2 \cdot \sum_{i=1}^{\log n} O(n/2^{i-1}) = O(n) \sum_{i=1}^{\log n} O(\frac{1}{2^{i-1}}) = O(n) \cdot O(1) = O(n).$

Exercise

Difficult Exercise:

Suppose that n-by-n matrix A contains exactly two peaks. Can we find both peaks faster than in time $O(n^2)$?