Exercise Sheet 2
 COMS10007 Algorithms 2019/2020

11.02.2020

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

1Θ and Ω

1. Let $c>1$ be a constant. Prove or disprove the following statements:
(a) $\log _{c} n \in \Theta(\log n)$.
(b) $\log \left(n^{c}\right) \in \Theta(\log n)$.
2. Let $c>2$ be a constant. Prove or disprove the following statement:

$$
2^{n} \in \Theta\left(c^{n}\right)
$$

3. Prove that the following two statements are equivalent:
(a) $f \in \Theta(g)$.
(b) $f \in O(g)$ and $g \in O(f)$.
4. Prove that the following two statements are equivalent:
(a) $f \in \Omega(g)$.
(b) $g \in O(f)$.

2 O-notation

1. Given are the functions:

$$
f_{1}=2^{\sqrt{n}}, f_{2}=\log ^{2}(20 n), f_{3}=n!, f_{4}=\frac{1}{2} n^{2} / \log (n), f_{5}=4 \log ^{2}(n), f_{6}=2^{\sqrt{\log n}}
$$

Relabel the functions such that $f_{i} \in O\left(f_{i+1}\right)$ (no need to give any proofs here).
2. Give functions f, g such that $f(n) \in O(g(n))$ and $2^{f(n)} \notin O\left(2^{g(n)}\right)$.

3 Runtime Analysis

```
Algorithm 1
Require: Int n\geq1
    x\leftarrow0
    for i=1\ldotsn do
        for }j=1\ldotsn\mathrm{ do
            x\leftarrowx+i\cdotj
        end for
    end for
    return }
```

```
Algorithm 2
Require: Int n\geq1
    x\leftarrow0
    for i=1\ldots.n do
        for }j=i\ldotsn\mathrm{ do
            x\leftarrowx+i\cdotj
        end for
    end for
    return }
```

Algorithm 3
Require: Int $n \geq 1$
$x \leftarrow 0$
$i \leftarrow 1$
while $i \leq n$ do
for $j=1 \ldots n$ do
$x \leftarrow x+i \cdot j$
end for
$i \leftarrow 2 \cdot i$
end while
return x

$\overline{\overline{\text { Algorithm 4 }}} \overline{\text { Require: Int } n \geq 1}$
$x \leftarrow 0$
$i \leftarrow 1$
while $i \leq n$ do
for $j=1 \ldots i$ do
$x \leftarrow x+i \cdot j$
end for
$i \leftarrow 2 \cdot i$
end while
return x

Determine the runtimes of Algorithms 1,2,3 and 4 using Big "Theta" notation.

4 Average Case Runtime of Linear Search (difficult!)

For integers $k, n \geq 1$ let $S_{k}(n)$ be the set of all integer arrays of length n where every array entry is taken from the set $\{0,1,2, \ldots, k-1\}$.

1. What is the average case runtime of linear search on $S_{3}(n)$?
2. What is the average case runtime of linear search on $S_{C}(n)$, for any constant C ?
3. What is the average case runtime of linear search on $S_{n}(n)$?
4. What is the average case runtime of linear search on $S_{\sqrt{n}}(n)$?
