Exercise Sheet 2 COMS10007 Algorithms 2019/2020

11.02.2020

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

1 Θ and Ω

- 1. Let c > 1 be a constant. Prove or disprove the following statements:
 - (a) $\log_c n \in \Theta(\log n)$.
 - (b) $\log(n^c) \in \Theta(\log n)$.
- 2. Let c > 2 be a constant. Prove or disprove the following statement:

$$2^n \in \Theta(c^n)$$
.

- 3. Prove that the following two statements are equivalent:
 - (a) $f \in \Theta(g)$.
 - (b) $f \in O(g)$ and $g \in O(f)$.
- 4. Prove that the following two statements are equivalent:
 - (a) $f \in \Omega(g)$. (b) $g \in O(f)$.

2 *O*-notation

1. Given are the functions:

$$f_1 = 2^{\sqrt{n}}, f_2 = \log^2(20n), f_3 = n!, f_4 = \frac{1}{2}n^2/\log(n), f_5 = 4\log^2(n), f_6 = 2^{\sqrt{\log n}}$$

Relabel the functions such that $f_i \in O(f_{i+1})$ (no need to give any proofs here).

2. Give functions f, g such that $f(n) \in O(g(n))$ and $2^{f(n)} \notin O(2^{g(n)})$.

3 Runtime Analysis

		Algorithm 3	Algorithm 4
Algorithm 1	Algorithm 2	Require: Int $n \ge 1$	Require: Int $n \ge 1$
Require: Int $n \ge 1$	Require: Int $n \ge 1$	$x \leftarrow 0$	$x \leftarrow 0$
$x \leftarrow 0$	$x \leftarrow 0$	$i \leftarrow 1$	$i \leftarrow 1$
for $i = 1 \dots n$ do	for $i = 1 \dots n$ do	while $i \leq n \operatorname{do}$	while $i \leq n \operatorname{\mathbf{do}}$
for $j = 1 \dots n$ do	for $j = i \dots n$ do	for $j = 1 \dots n$ do	for $j = 1 \dots i$ do
$x \leftarrow x + i \cdot j$	$x \leftarrow x + i \cdot j$	$x \leftarrow x + i \cdot j$	$x \leftarrow x + i \cdot j$
end for	end for	end for	end for
end for	end for	$i \leftarrow 2 \cdot i$	$i \leftarrow 2 \cdot i$
return x	return x	end while	end while
		return x	return x

Determine the runtimes of Algorithms 1,2,3 and 4 using Big "Theta" notation.

4 Average Case Runtime of Linear Search (difficult!)

For integers $k, n \ge 1$ let $S_k(n)$ be the set of all integer arrays of length n where every array entry is taken from the set $\{0, 1, 2, \ldots, k-1\}$.

- 1. What is the average case runtime of linear search on $S_3(n)$?
- 2. What is the average case runtime of linear search on $S_C(n)$, for any constant C?
- 3. What is the average case runtime of linear search on $S_n(n)$?
- 4. What is the average case runtime of linear search on $S_{\sqrt{n}}(n)$?