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Data streaming

This unit is about algorithms for processing data streams.

We will develop fast, small space data, typically but not
always randomised data structures and algorithms.

For a small subset of the many applications, see e.g. Google’s page
on the Count-Min sketch1.

1Some of the links are broken unfortunately but the application links work

https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/


What is in this half of the unit?

Subject: Topics Reference
What is streaming? Introduction
Probability overview Markov, Chebyshev, Chernoff MIT notes
Finding frequent elements The Misa-Gries algorithm Ch. 1
Counting distinct elements The Tidemark algorithm Ch. 2
Approximate counting The Morris counter Ch. 4
Finding frequent items CountSketch/Min Sketch Ch. 5
Sparse recovery Fingerprinting and hashing Ch. 9
`0-sampling Sample by frequency Section 10.2

The set text is the Data Stream Algorithms by Chakrabati. A version
without the word DRAFT is linked from the unit web page.

https://bit.ly/2PY6K1E
https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf


What is in the second half of the unit?

Subject: Topics Reference
Graph streams? Connectivity, Bipartiteness Ch. 14.2, 14.3
Shortest distances Computing spanners Ch. 14.4
Matchings I Unweighted and weighted Ch. 15
Matchings II Multiple passes Sec. 3 in [1]
Matchings III Insertion-deletion streams Sec. 5 in [2]
The AGM sketch Connectivity with deletions Ch. 16
Lower Bounds Communication complexity Ch. 18
Lower Bounds II Yao’s Lemma, INDEX problem Ch. 18

[1] S. Kale, S. Tirodkar: Maximum Matching in Two, Three, and a Few More
Passes Over Graph Streams. APPROX-RANDOM 2017.
https://arxiv.org/pdf/1702.02559.pdf

[2] C. Konrad: Maximum Matching in Turnstile Streams. ESA 2015.

https://arxiv.org/pdf/1505.01460.pdf

https://arxiv.org/pdf/1702.02559.pdf
https://arxiv.org/pdf/1505.01460.pdf


What is data streaming?

How many distinct IPs? What is the most frequent IP?
Estimate frequency of an IP? Randomly sample an IP. Etc.

IP Frequency

37.56.181.226 5

241.79.159.27 1

163.0.199.170 13

62.26.98.238 0

47.127.134.141 4

4.232.47.134 3

16.13.141.93 7
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The cash register and turnstile models

(a) cash register (b) turnstile

• Streaming elements may have an associated count. For example,
two apples or eleven copies of IP address 37.56.181.226.

• In the cash register streaming model counts are always
non-negative.

• In the turnstile streaming the count may be negative or positive.
For example we may remove copies of an IP address as well as
adding copies or in a graph we may remove edges as well as add
them.
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Advantages of streaming algorithms

• In an internet router, for example, we never be able to store all the
data and may want answers to be produced quickly.

• These properties may be desirable:

1. One-pass. This means we never go back and look at data in the
past.

2. Small space. This means we use much less space than it takes to
store the whole input.

3. Near linear time. This means near constant time per arriving token.

• If the data set is massive, fast, small space, one-pass algorithms
may be needed even if it is not being streamed.
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Is what we want to do possible?

• Sometimes there are proofs that an exact guaranteed correct
answer cannot be given in sublinear space. This is true even more
so for one-pass algorithms.

• Some lower bound proofs will be shown at the end of the unit.

• Where exact and provably correct answers can’t be given we will
instead show approximate and/or randomised solutions which are
correct with high probability.

• For example, answers that with 90% probability are within 10% of
the correct value.
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What do I need to do well this unit?

• The unit will use discrete probability to bound the probability of
error of the various algorithms.

• Please reread the probability slides from Advanced Algorithms
(linked from the unit web page). A good understanding of these
will be expected.

• All the probability needed is also covered in chapters 14-19 of
(probability notes). You will not need all of this (in particular you
won’t need to learn any probability distributions except for the
uniform distribution) but you should read it and keep it to hand.

• The unit set text is by Chakrabati and the latest version can be
found at (here). A version without the word DRAFT is on the unit
web page.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/
https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
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Other readings and related courses

• Andrew McGregor’s 2012 course from the University of
Massachusetts, Amherst (McGregor).

• Alexandr Andoni’s 2015 course from the University of
Columbia (Andoni).

• Indyk and Nelson’s 2017 course from Harvard University
(Harvard).

https://people.cs.umass.edu/~mcgregor/courses/CS711S12/index.html
http://www.cs.columbia.edu/~andoni/F15_AlgoTechMassiveData/index.html
https://www.sketchingbigdata.org/fall17/lec/

