
Advanced topics in TCS

Exercise sheet 3.

CountSketch, Count-Min Sketch, `0-sampling

Raphaël Clifford

Question 1. CountSketch

Implement the CountSketch algorithm. You will have to choose a method
for creating the hash functions needed. In countsketch.py I have shown how
g() can be made using MD5. You can similarly make the h() function using
SHA256.

def g(val, idx):
if idx > 127:
print("Run out of bits in g() function")
quit()

bits = bin(int.from bytes(hashlib.md5(val.encode()).digest(),
"little"))[2:].zfill(128)

return int(bits[idx])∗2−1 # Map to {−1, 1}

You may prefer to use pairwise independent hash functions instead in
which case you will need to store the different (a, b) pairs you create. Each
approach has its own advantages and disadvantages would need to be com-
pared experimentally.

The provided code has a function createturnstilesequence (length). This
will create an array of pairs (c, `) where c is a positive or negative count
and ` is a printable character. It is designed so that the counts will broadly
speaking follow a Zipf distribution. In other words, some will occur much
more frequently than others.

1

Raphaël Clifford

Use your implementation of CountSketch to find out which letters occur
most frequently.

Question 2. 1-sparse recovery

Suppose we modified the 1-sparse recovery algorithm to declare f = 0 when-
ever ` = z = 0 without using the value of p. Would this still be correct?
Why or why not?

Question 3. s-sparse recovery

1. Consider running the s-sparse recovery algorithm on a stream with
more than s items with non-zero frequency. What will the output be?

2. How can the algorithm be modified to detect if the stream has more
than s items with non-zero frequency?

Question 4. Counting triangles

Consider an undirected graph with n vertices and t triangles where edges
are arriving in a stream. A triangle is a set of 3 vertices such that any two
of them are connected by an edge of the graph. We would like to count
approximately the number of triangles in the graph. Here is a simple and
not very accurate method.

• Randomly pick (uniformly with replacement) k subsets S1, . . . , Sk of
the vertices each of size 3.

• Let xS be the number of edges seen between the vertices in set S.

• Let C be the number of indices i for which xSi
= 3. That is the number

of triangles found.

• Our estimate is R =
(n
3)
k
C.

Answer the following questions about this triangle counting method:

1. Is R an unbiased estimate of t? Give a proof.

2. Show that var(R) ∈ O
(

tn3

k

)
.

3. Give an upper bound for the probability that |R−t| ≥ c
√

tn3

k
for c ≥ 1.

Raphaël Clifford

Solutions for exercise sheet 3

Solution 1.

See code linked from the unit web page.

Solution 2.

No. Consider the input (1, 1), (2,−2), (3, 1). This gives ` = z = 0 but all
three tokens have non-zero count.

Solution 3.

1. The algorithm will return a random set of s tokens.

2. TBC

Solution 4.

1. Let Ci be an indicator random variable with P (Ci = 1) =

(
t

(n
3)

)
.

We have that:

C =
k∑

i=1

Ci

Therefore

E[R] =

(
n

3

)
1

k
E[C] =

(
n

3

)
1

k
× k t(

n
3

) = t

So R is an unbiased estimator of t as claimed.

2. Since we are sampling with replacement, then Ci are mutually inde-
pendent. As a result

var[R] =

(
n

3

)2
1

k2
var[C]

=

(
n

3

)2
1

k2

k∑
i=1

var[Ci]

=

(
n

3

)2
1

k2
k
t(
n
3

) (1− t(
n
3

))

=
t

k

((
n

3

)
− t
)
∈ O

(
tn3

k

)

Raphaël Clifford

3. By Chebyshev’s inequality P (|R− t| ≥ cσ) ≤ 1
c2

. The standard devia-

tion σ ≤
√

tn3

k
and therefore P (|R− t| ≥ c

√
tn3

k
) ≤ 1

c2

