Advanced topics in TCS

Exercise sheet 4: Solution
Minimum spanning tree, Testing k-connectivity

Christian Konrad

Question 1. Minimum Spanning Tree (MST)

We consider a weighted graph G = (V, E,w), where w : F — N is an edge weight
function. A minimum spanning tree F C FE in G is a spanning tree in G' of minimum
weight, i.e., the sum of its edge weights is as small as possible.

We consider the streaming edge-arrival model where the edges arrive together with
their weights. More specifically, the input stream consists of a sequence of tuples (e;, w(e;));,
where w(e;) is the weight of edge e;.

1. Give a 1-pass semi-streaming algorithm for computing an MST. Solution:

7~

F+ 0
While stream not empty:

(a) Let e be the next edge in the stream
(b) if (F U {e}) does not contain a cycle then F < F U {e}
(c) else ( (F'U{e}) does contain a cycle)

i. Let C be the edge set of the (unique) cycle in F'U {e}
ii. Let f be an edge of maximum weight in C'\ {e}
iii. if w(f) > w(e) then F « (F\ {f}) U{e}

return F

2. Let E; be the first ¢ edges in the stream, G; = (V, E;, w|g,) (where w|g, denotes the
weight function w restricted to the domain E;), and let F; denote the collection of
edges stored by the algorithm given in the previous exercise after iteration i. Prove
by induction that F; is a MST in G;.

The following property may be useful:



Lemma 1. Let T' C E be a spanning tree in a weighted graph G = (V, E,w). Then,
if T' is not a minimum spanning tree, then there exists an edge e € E\T such that
w(e) < w(f), for at least one edge f different to e in the unique cycle in T U {e}.

Hint: Adapt the spanning tree algorithm from the lecture.

Solution:

Proof.

Base case. Iy = () and Ey = (. Observe that F is a MST of an empty
graph.

Induction step. Let F; be a MST in graph G;. We will only consider the
interesting case when Fy1 = (F; \ {fit1}) U {eis1}, where fi; is the edge
of the cycle Cjy; that was removed when inserting e;;;. Observe that this
implies that w(e;y1) < w(fiy1).

Assume for the sake of a contradiction that F; . is not a MST in G;;1. Then,
by Lemma 1, there exists an edge e € E;1 \ Fit1 such that Fiq U {e}
contains a unique cycle C' with w(e) < w(f) for some edge f € C'\ {e}. Since
eir1 € Fip1 and e ¢ Fi,q, we have e # e;;1 and therefore e € E;.

We will argue now that F; U {e} also contains a cycle C’ such that e is not
a heaviest edge in C’. This, however, contradicts then the fact that F; is a
MST, since we could swap in F; the edge e with a heaviest edge in C" and
create a spanning tree of less weight.

We consider two cases:

(a) First, suppose that e;11 ¢ C. Then, C' C E; and C also constitutes a
cycle in F; U {e} with the same property that e is not a heaviest edge
in this cycle.

(b) Next, suppose that e;1; € C. Then, the symmetric difference C’' =
C® (Ciy1 \ {eix1}) (with A@ B := (A\ B)U (B \ A)) also forms a
cycle that necessarily contains the edges f;+1 and e (see Figure 1). Two
configurations are possible:

Suppose first that f € C” (top illustration in Figure 1) . Then we are
done since w(e) < w(f).

Next, suppose that f ¢ C’ (bottom illustration in Figure 1). Then, we
necessarily have that f € (C;,; and since the algorithm removed f;
from F; instead of f, we have w(f) < w(f;41). Since w(e) < w(f), we
also have w(e) < wy,,, and e is thus not the heaviest edge.

]

Question 2. Deciding k-Connectivity

We say that a graph G is k-connected if we need to remove at least k edges from G in
order to disconnect G.



fi+1

Cin
e
C
f i1

Figure 1: Solution to the MST exercise. Top: Case f € C’. Bottom: Case f ¢ C".

Consider the following algorithm for deciding k-connectivity of a graph:

1. Fl,FQ,...,Fk(—@

2. For each edge e in the stream: If there is an ¢ € {1,...,k} such that
F; U {e} has no cycle then add e to F; (if there are multiple such 4 then
pick only one, ties can be broken arbitrarily)

3. Post-processing: Let F' = Ule F;

If (V, F) is k-connected then return “G is k-connected”, otherwise return
“G is not k-connected”

Algorithm 1.

1. How much space does Algorithm 1 use (as a function of n and k)?

Proof.

Since each set F; is a spanning forest, we have |F;| < n — 1. We thus store at
most k- (n — 1) edges. Accounting space O(logn) for the storage of an edge,
we obtain space O(knlogn). Observe that this is a semi-streaming algorithm
as long as k = O(poly logn). O

2. Prove that the algorithm is correct.

Proof.
Suppose first that (V, F') is k-connected. Then, since (V, F') is a subgraph of



G, we have that G is also k-connected. The algorithm is thus correct when
it outputs G is k-connected.

Suppose now for the sake of a contradiction that G is k-connected but the
algorithm outputs G is not k-connected. The fact that the algorithm outputs
that G is not k-connected implies that (V, F') is not k-connected. Hence, we
can remove at most k — 1 edges from (V| F') in order to disconnect (V, F),
or, in other words, the graph (V, F') contains a cut, i.e., a partitioning of the
vertex set into two parts S,V \ S, such that at most £ — 1 edges connect V/
to S\ V. Observe that this also implies that there exists an index i such
that F; does not contain an edge across the cut (S,V \ S). Recall that G is
k-connected. Hence, there exists an edge e € E \ F' that connects a vertex
in S to a vertex in V' \ S. However, this implies that when e arrived in the
stream, it would have been inserted into Fj;: Since F; does not contain an
edge crossing the cut, adding e to F; would not create a cycle). This is a
contradiction, which completes the proof. O




