Advanced topics in TCS

Exercise sheet 4: Solution
 Minimum spanning tree, Testing k-connectivity

Christian Konrad

Question 1. Minimum Spanning Tree (MST)

We consider a weighted graph $G=(V, E, w)$, where $w: E \rightarrow \mathbb{N}$ is an edge weight function. A minimum spanning tree $F \subseteq E$ in G is a spanning tree in G of minimum weight, i.e., the sum of its edge weights is as small as possible.

We consider the streaming edge-arrival model where the edges arrive together with their weights. More specifically, the input stream consists of a sequence of tuples $\left(e_{i}, w\left(e_{i}\right)\right)_{i}$, where $w\left(e_{i}\right)$ is the weight of edge e_{i}.

1. Give a 1-pass semi-streaming algorithm for computing an MST. Solution:

$$
\begin{aligned}
& F \leftarrow \emptyset \\
& \text { While stream not empty: }
\end{aligned}
$$

(a) Let e be the next edge in the stream
(b) if $(F \cup\{e\})$ does not contain a cycle then $F \leftarrow F \cup\{e\}$
(c) else $((F \cup\{e\})$ does contain a cycle)
i. Let C be the edge set of the (unique) cycle in $F \cup\{e\}$
ii. Let f be an edge of maximum weight in $C \backslash\{e\}$
iii. if $w(f)>w(e)$ then $F \leftarrow(F \backslash\{f\}) \cup\{e\}$
return F
2. Let E_{i} be the first i edges in the stream, $G_{i}=\left(V, E_{i},\left.w\right|_{E_{i}}\right)$ (where $\left.w\right|_{E_{i}}$ denotes the weight function w restricted to the domain E_{i}), and let F_{i} denote the collection of edges stored by the algorithm given in the previous exercise after iteration i. Prove by induction that F_{i} is a MST in G_{i}.

The following property may be useful:

Lemma 1. Let $T \subseteq E$ be a spanning tree in a weighted graph $G=(V, E, w)$. Then, if T is not a minimum spanning tree, then there exists an edge $e \in E \backslash T$ such that $w(e)<w(f)$, for at least one edge f different to e in the unique cycle in $T \cup\{e\}$.

Hint: Adapt the spanning tree algorithm from the lecture.

Solution:

Proof.
Base case. $F_{0}=\emptyset$ and $E_{0}=\emptyset$. Observe that F_{0} is a MST of an empty graph.
Induction step. Let F_{i} be a MST in graph G_{i}. We will only consider the interesting case when $F_{i+1}=\left(F_{i} \backslash\left\{f_{i+1}\right\}\right) \cup\left\{e_{i+1}\right\}$, where f_{i+1} is the edge of the cycle C_{i+1} that was removed when inserting e_{i+1}. Observe that this implies that $w\left(e_{i+1}\right)<w\left(f_{i+1}\right)$.
Assume for the sake of a contradiction that F_{i+1} is not a MST in G_{i+1}. Then, by Lemma 1, there exists an edge $e \in E_{i+1} \backslash F_{i+1}$ such that $F_{i+1} \cup\{e\}$ contains a unique cycle C with $w(e)<w(f)$ for some edge $f \in C \backslash\{e\}$. Since $e_{i+1} \in F_{i+1}$ and $e \notin F_{i+1}$, we have $e \neq e_{i+1}$ and therefore $e \in E_{i}$.
We will argue now that $F_{i} \cup\{e\}$ also contains a cycle C^{\prime} such that e is not a heaviest edge in C^{\prime}. This, however, contradicts then the fact that F_{i} is a MST, since we could swap in F_{i} the edge e with a heaviest edge in C^{\prime} and create a spanning tree of less weight.
We consider two cases:
(a) First, suppose that $e_{i+1} \notin C$. Then, $C \subseteq E_{i}$ and C also constitutes a cycle in $F_{i} \cup\{e\}$ with the same property that e is not a heaviest edge in this cycle.
(b) Next, suppose that $e_{i+1} \in C$. Then, the symmetric difference $C^{\prime}=$ $C \oplus\left(C_{i+1} \backslash\left\{e_{i+1}\right\}\right)$ (with $A \oplus B:=(A \backslash B) \cup(B \backslash A)$) also forms a cycle that necessarily contains the edges f_{i+1} and e (see Figure 1). Two configurations are possible:
Suppose first that $f \in C^{\prime}$ (top illustration in Figure 1). Then we are done since $w(e)<w(f)$.
Next, suppose that $f \notin C^{\prime}$ (bottom illustration in Figure 1). Then, we necessarily have that $f \in C_{i+1}$ and since the algorithm removed f_{i+1} from F_{i} instead of f, we have $w(f) \leq w\left(f_{i+1}\right)$. Since $w(e)<w(f)$, we also have $w(e)<w_{f_{i+1}}$ and e is thus not the heaviest edge.

Question 2. Deciding k-Connectivity

We say that a graph G is k-connected if we need to remove at least k edges from G in order to disconnect G.

Figure 1: Solution to the MST exercise. Top: Case $f \in C^{\prime}$. Bottom: Case $f \notin C^{\prime}$.

Consider the following algorithm for deciding k-connectivity of a graph:

1. $F_{1}, F_{2}, \ldots, F_{k} \leftarrow \varnothing$
2. For each edge e in the stream: If there is an $i \in\{1, \ldots, k\}$ such that $F_{i} \cup\{e\}$ has no cycle then add e to F_{i} (if there are multiple such i then pick only one, ties can be broken arbitrarily)
3. Post-processing: Let $F=\bigcup_{i=1}^{k} F_{i}$

If (V, F) is k-connected then return " G is k-connected", otherwise return " G is not k-connected"

Algorithm 1.

1. How much space does Algorithm 1 use (as a function of n and k)?

Proof.
Since each set F_{i} is a spanning forest, we have $\left|F_{i}\right| \leq n-1$. We thus store at most $k \cdot(n-1)$ edges. Accounting space $O(\log n)$ for the storage of an edge, we obtain space $O(k n \log n)$. Observe that this is a semi-streaming algorithm as long as $k=O($ poly $\log n)$.
2. Prove that the algorithm is correct.

Proof.
Suppose first that (V, F) is k-connected. Then, since (V, F) is a subgraph of
G, we have that G is also k-connected. The algorithm is thus correct when it outputs G is k-connected.
Suppose now for the sake of a contradiction that G is k-connected but the algorithm outputs G is not k-connected. The fact that the algorithm outputs that G is not k-connected implies that (V, F) is not k-connected. Hence, we can remove at most $k-1$ edges from (V, F) in order to disconnect (V, F), or, in other words, the graph (V, F) contains a cut, i.e., a partitioning of the vertex set into two parts $S, V \backslash S$, such that at most $k-1$ edges connect V to $S \backslash V$. Observe that this also implies that there exists an index i such that F_{i} does not contain an edge across the cut $(S, V \backslash S)$. Recall that G is k-connected. Hence, there exists an edge $e \in E \backslash F$ that connects a vertex in S to a vertex in $V \backslash S$. However, this implies that when e arrived in the stream, it would have been inserted into F_{i} : Since F_{i} does not contain an edge crossing the cut, adding e to F_{i} would not create a cycle). This is a contradiction, which completes the proof.

