
Advanced topics in TCS

Exercise sheet 4: Solution
Minimum spanning tree, Testing k-connectivity

Christian Konrad

Question 1. Minimum Spanning Tree (MST)

We consider a weighted graph G = (V,E,w), where w : E → N is an edge weight
function. A minimum spanning tree F ⊆ E in G is a spanning tree in G of minimum
weight, i.e., the sum of its edge weights is as small as possible.

We consider the streaming edge-arrival model where the edges arrive together with
their weights. More specifically, the input stream consists of a sequence of tuples (ei, w(ei))i,
where w(ei) is the weight of edge ei.

1. Give a 1-pass semi-streaming algorithm for computing an MST. Solution:

F ← ∅
While stream not empty:

(a) Let e be the next edge in the stream

(b) if (F ∪ {e}) does not contain a cycle then F ← F ∪ {e}

(c) else ((F ∪ {e}) does contain a cycle)

i. Let C be the edge set of the (unique) cycle in F ∪ {e}
ii. Let f be an edge of maximum weight in C \ {e}

iii. if w(f) > w(e) then F ← (F \ {f}) ∪ {e}

return F

2. Let Ei be the first i edges in the stream, Gi = (V,Ei, w|Ei
) (where w|Ei

denotes the
weight function w restricted to the domain Ei), and let Fi denote the collection of
edges stored by the algorithm given in the previous exercise after iteration i. Prove
by induction that Fi is a MST in Gi.

The following property may be useful:

1

Lemma 1. Let T ⊆ E be a spanning tree in a weighted graph G = (V,E,w). Then,
if T is not a minimum spanning tree, then there exists an edge e ∈ E \ T such that
w(e) < w(f), for at least one edge f different to e in the unique cycle in T ∪ {e}.

Hint: Adapt the spanning tree algorithm from the lecture.

Solution:

Proof.
Base case. F0 = ∅ and E0 = ∅. Observe that F0 is a MST of an empty
graph.
Induction step. Let Fi be a MST in graph Gi. We will only consider the
interesting case when Fi+1 = (Fi \ {fi+1}) ∪ {ei+1}, where fi+1 is the edge
of the cycle Ci+1 that was removed when inserting ei+1. Observe that this
implies that w(ei+1) < w(fi+1).
Assume for the sake of a contradiction that Fi+1 is not a MST in Gi+1. Then,
by Lemma 1, there exists an edge e ∈ Ei+1 \ Fi+1 such that Fi+1 ∪ {e}
contains a unique cycle C with w(e) < w(f) for some edge f ∈ C \{e}. Since
ei+1 ∈ Fi+1 and e /∈ Fi+1, we have e 6= ei+1 and therefore e ∈ Ei.
We will argue now that Fi ∪ {e} also contains a cycle C ′ such that e is not
a heaviest edge in C ′. This, however, contradicts then the fact that Fi is a
MST, since we could swap in Fi the edge e with a heaviest edge in C ′ and
create a spanning tree of less weight.
We consider two cases:

(a) First, suppose that ei+1 /∈ C. Then, C ⊆ Ei and C also constitutes a
cycle in Fi ∪ {e} with the same property that e is not a heaviest edge
in this cycle.

(b) Next, suppose that ei+1 ∈ C. Then, the symmetric difference C ′ =
C ⊕ (Ci+1 \ {ei+1}) (with A ⊕ B := (A \ B) ∪ (B \ A)) also forms a
cycle that necessarily contains the edges fi+1 and e (see Figure 1). Two
configurations are possible:

Suppose first that f ∈ C ′ (top illustration in Figure 1) . Then we are
done since w(e) < w(f).

Next, suppose that f /∈ C ′ (bottom illustration in Figure 1). Then, we
necessarily have that f ∈ Ci+1 and since the algorithm removed fi+1

from Fi instead of f , we have w(f) ≤ w(fi+1). Since w(e) < w(f), we
also have w(e) < wfi+1

and e is thus not the heaviest edge.

Question 2. Deciding k-Connectivity

We say that a graph G is k-connected if we need to remove at least k edges from G in
order to disconnect G.

2

Figure 1: Solution to the MST exercise. Top: Case f ∈ C ′. Bottom: Case f /∈ C ′.

Consider the following algorithm for deciding k-connectivity of a graph:

1. F1, F2, . . . , Fk ← ∅

2. For each edge e in the stream: If there is an i ∈ {1, . . . , k} such that
Fi ∪ {e} has no cycle then add e to Fi (if there are multiple such i then
pick only one, ties can be broken arbitrarily)

3. Post-processing: Let F =
⋃k

i=1 Fi

If (V, F) is k-connected then return “G is k-connected”, otherwise return
“G is not k-connected”

Algorithm 1.

1. How much space does Algorithm 1 use (as a function of n and k)?

Proof.
Since each set Fi is a spanning forest, we have |Fi| ≤ n− 1. We thus store at
most k · (n− 1) edges. Accounting space O(log n) for the storage of an edge,
we obtain space O(kn log n). Observe that this is a semi-streaming algorithm
as long as k = O(poly log n).

2. Prove that the algorithm is correct.

Proof.
Suppose first that (V, F) is k-connected. Then, since (V, F) is a subgraph of

3

G, we have that G is also k-connected. The algorithm is thus correct when
it outputs G is k-connected.
Suppose now for the sake of a contradiction that G is k-connected but the
algorithm outputs G is not k-connected. The fact that the algorithm outputs
that G is not k-connected implies that (V, F) is not k-connected. Hence, we
can remove at most k − 1 edges from (V, F) in order to disconnect (V, F),
or, in other words, the graph (V, F) contains a cut, i.e., a partitioning of the
vertex set into two parts S, V \ S, such that at most k − 1 edges connect V
to S \ V . Observe that this also implies that there exists an index i such
that Fi does not contain an edge across the cut (S, V \ S). Recall that G is
k-connected. Hence, there exists an edge e ∈ E \ F that connects a vertex
in S to a vertex in V \ S. However, this implies that when e arrived in the
stream, it would have been inserted into Fi: Since Fi does not contain an
edge crossing the cut, adding e to Fi would not create a cycle). This is a
contradiction, which completes the proof.

4

