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Abstract. We consider the problem of scheduling wireless links in the
physical model, where we seek a partition of a given a set of wireless links
into the minimum number of subsets satisfying the signal-to-interference-
and-noise-ratio (SINR) constraints. We consider the two families of ap-
proximation algorithms that are known to guarantee O(logn) approxi-
mation for the scheduling problem, where n is the number of links. We
present network constructions showing that the approximation ratios of
those algorithms are no better than logarithmic, both in n and in ∆,
where ∆ is a geometric parameter – the ratio of the maximum and min-
imum link lengths.
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1 Introduction

The task of the MAC layer in TDMA-based (time-division multiple access)
wireless networks is to determine which nodes can communicate in which time-
frequency slot. A scheduler aims to optimize criteria involving throughput and
fairness. This requires obtaining effective spatial reuse while satisfying the inter-
ference constraints. We treat the fundamental scheduling problem of partitioning
a given set of communication links into the fewest possible feasible sets.

We adopt the SINR model of communication, where signal decays as it travels
and a transmission is successful if its strength at the receiver exceeds the accu-
mulated signal strength of interfering transmission by a sufficient (technology
determined) factor. Considerable progress has been made in recent years in elu-
cidating essential algorithmic properties of the SINR model (e.g., [34, 13, 1, 9, 31,
29, 24, 8, 27]). Early work on the scheduling problem includes [6, 10, 5]. Gupta and
Kumar [16] proposed the geometric version of SINR and initiated average-case
analysis of network capacity known as scaling laws. NP-completeness has been
shown for scheduling with different forms of power control: none [14], limited
[28], and unbounded [32]. Moscibroda and Wattenhofer [34] initiated worst-case
analysis in the SINR model.

Although the standard analytic assumption that signal decays polynomially
with the distance traveled is far from realistic [36, 33], it has been shown that re-
sults obtained with that assumption can be translated to the setting of arbitrary
measured signal decay [3, 15], as well as to Rayleigh fading model [7].



The scheduling problem has been considered both for fixed oblivious power
assignments (where the power chosen for a link depends only on the link itself)
and for arbitrary power control. This paper addresses algorithms dealing with
both scenarios.

Finding constant-factor approximation to the scheduling problem has proved
challenging. However, there are several approaches giving logarithmic approxi-
mation.

I. One way of achieving O(log n) approximation is by greedy or first-fit al-
gorithms, where the links are processed in a non-decreasing order of length and
are assigned to the first slot where they “fit” [26, 22, 29, 30]. The approximation
ratio of such algorithms is usually obtained by arguing that such algorithms
provide constant factor approximation to the capacity problem, where the goal
is to select a large subset of links that can successfully transmit in the same
time slot. It has also been shown that such algorithms perform well for some
randomly generated network instances [2].

II. Another approach giving O(log n)-approximation (for fixed power assign-
ments) is to use randomization: links try to transmit in each time slot with
certain transmission probabilities, and each link is assigned to the slot where
its transmission succeeded [31, 21]. It is known that appropriate choice of the
probabilities guarantees an O(log n) approximation (w.h.p).

III. Yet another approach is to divide the links into groups of nearly equal
length and schedule each group separately. Following this approach, numerous
O(log∆)-approximation results have been argued [14, 12, 18], where ∆ is the
ratio between the longest and shortest link length.

The only known algorithms to achieve less than O(n) approximation for
scheduling are from the first two families. The only known constant-factor ap-
proximation algorithms for scheduling are obtained in the case of the linear power
scheme [23, 37]. In a recent paper, we presented an O(log∗∆)-approximation al-
gorithm for scheduling with power control [25], but here too, the approximation
factor is only O(n) in terms of n.

The optimum number of slots for scheduling has also been approximated
through interference measures [31, 21, 19]. However, no measure is known to
give better than O(log n) approximation. It is also not evident how to efficiently
compute such measures.

Many variants of the scheduling problem are known to be NP-hard but we
are not aware of any significant inapproximability result.

Our Results. While for the third family of algorithms it is easy to find examples
attaining the approximation ratio Ω(log∆), we are not aware of constructions
showing that the approximation ratio of O(log n) of the first and second fam-
ilies cannot be improved. For the second family of algorithms, a construction
has been presented in [21] for which the output of the algorithm is a Θ(log n)-
approximation, but their construction does not exclude that Θ(log n) is only
additive, and it is asked in [21] whether another analysis of the algorithm could
give a smaller approximation ratio.
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We show that algorithms of families I and II achieve (including the algo-
rithms for both fixed power assignments and optimized powers) no better than
Ω( log∆

log log∆ ) (in terms of only ∆) or Ω( logn
log logn ) (in terms of only n) approxi-

mation even in one dimensional networks. Our constructions are obtained by
modeling sets of links after certain graphs that are “hard” instances for graph
coloring algorithms similar to the families I and II.

These results suggest that new methods are needed for obtaining better than
logarithmic approximation for scheduling. Note, however, that our constructions
do not work for the uniform power assignment, where all links use equal power.

2 Model and Definitions

Communication Links. Consider a set L of n links, numbered from 1 to n.
Each link i represents a unit-demand communication request from a sender si
to a receiver ri - point-size wireless transmitter/receivers located in a metric
space with distance function d. We denote dij = d(si, rj) the distance from the
sender of link i to the receiver of link j, li = d(si, ri) the length of link i and
d(i, j) the minimum distance between {si, ri} and {sj , rj}. We let ∆(L) denote
the ratio between longest and shortest link lengths in L, and drop L when clear
from context.
SINR Feasibility and the Scheduling Problem. In the physical model (or
SINR model) of communication [35], a transmission of a link i is successful iff

Si > β ·

 ∑
j∈S\{i}

Iji +N

 , (1)

where Si denotes the received signal power of link i, Iji denotes the interference
power on link i caused by link j, N ≥ 0 is a constant denoting the ambient noise,
β ≥ 1 is the minimum SINR (Signal to Interference and Noise Ratio) required
for a message to be successfully received and S is the set of links transmitting
concurrently with link i. If P : L → R+ is the power assignment of links –

P (i) defines the transmission power of the sender node si, then Si = P (i)
lαi

and

Iji = P (j)
dαji

, where α ∈ (2, 6) is the path-loss exponent.

A set L of links is called P -feasible if (1) holds for each link i ∈ L when using
power assignment P . A collection of sets is P -feasible if each set in the collection
is P -feasible. When transmission power is also subject to optimization, we call
a set of links (collection) simply feasible if there is a power assignment P such
that the set (collection) is P -feasible.

The scheduling problem with a fixed power scheme P is to partition a given
set L into the minimum number of P -feasible subsets (or slots).

The scheduling problem with power control is to partition a given set L into
the minimum number or feasible subsets.

For simplicity of constructions, we assume henceforth that N = 0. The
bounds can be adapted for the case of positive noise by scaling power levels.
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Affectance: Fixed Power Assignments and Power Schemes. Follow-
ing [26], we define the affectance aP (i, j) of link j by link i under power as-
signment P by

aP (i, j) =
Iij
Sj

=
P (i)lαj
P (j)dαij

.

We let aP (j, j) = 0 and extend aP additively over sets: aP (S, i) =
∑
j∈S aP (j, i)

and aP (i, S) =
∑
j∈S aP (i, j). It is readily verified (recall that we assumed N =

0) that a set of links S is P -feasible if and only if aP (S, i) ≤ 1/β for all i ∈ S.
We will be particularly interested in power schemes Pδ of the form Pδ(i) =

C · lδαi , where C is constant for the given network instance. These are called
oblivious power assignments because the power level of each link depends only
on a local information - the link length. Examples of such power schemes are
uniform power scheme (P0), linear power scheme (P1) and mean power scheme
(P1/2) [11].

It will be useful to note that for any power scheme Pδ, aPδ(i, j) =

(
lδi l

(1−δ)
j

dij

)α
.

Affectance: Power Control. For scheduling with power control, the following

definition of affectance is used [29]: a(i, j) =

(
li

d(i, j)

)α
.

Similarly as before, we define a(i, i) = 0 and extend a additively to sets.
As shown in [29], if the following condition holds for any link i ∈ S with a
sufficiently small constant γ (depending on α and β), then set S is feasible:
a(S−i , i) < γ, where S−i denotes the subset of links in S that are no longer than
link i: S−i = {j ∈ S : lj ≤ li}.

3 Lower Bounds for First-Fit Algorithms

3.1 Scheduling with Fixed Power Schemes

The first-fit algorithm considered in [26] was originally used for the uniform
power scheme, but applies also to other oblivious power schemes [22]. The al-
gorithm is a simple greedy procedure, where one starts with empty slots in
a fixed order, then the links are processed in non-decreasing order by length
and a link i is assigned to the first slot S such that aP (S, i) + aP (i, S) < γ
for a given constant γ. One may also generalize the acceptance condition with
f [aP (S, i), aP (i, S)] < γ, where f : R+ × R+ → R is a decreasing function of
both arguments that goes to 0 when both arguments go to 0. Below, NDFirstFit
will refer to such an algorithm.

The family of hard network instances for the first-fit algorithm is inspired by a
well known tree construction called binomial trees (in relation to binomial heaps),
that has been used to obtain lower bounds for first-fit algorithms for graph
coloring [17, 4]. For any given power scheme Pδ with δ ∈ (0, 1), we construct a
family LR of network instances on the real line using binomial trees as a model,
where no pair of links corresponding to adjacent nodes in the tree can be in
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the same Pδ-feasible set together, but are otherwise spatially well separated.
We show that while LR can be scheduled in constant number of slots using Pδ,
NDFirstFit gives only an Ω(log n) approximation in terms of n and Ω( log∆

log log∆ )
approximation in terms of ∆.

Theorem 1. Let δ ∈ (0, 1). For each n0 > 0, there is a set of n > n0 links LR on
the real line such that NDFirstFit achieves no better than Ω(log n) = Ω( log∆

log log∆ )
approximation for scheduling with Pδ.

Binomial Trees. We use the following family of trees, known as binomial trees,
as a model for our construction. The rooted tree TR, (R ≥ 0), is constructed
recursively, as follows. T0 consists of a single root vertex. For R ≥ 0, the tree
TR+1 is obtained from TR by adding a new child vertex to the root, then adding
a copy of TR, by identifying its root node with the new child. For example, T1
consists of two nodes connected by an edge and T2 consists of a root vertex that
has two children and one “grandchild”. Note that the number of vertices in TR
is n = 2R. Let us call the set of leaves of TR layer R. For t = R− 1, R− 2, . . . , 1,
layer t denotes the set of leaves of the tree that remains after removing layers
R,R− 1, ..., t+ 1. Thus, TR has R+ 1 layers and the root is in layer 0. Further,
each layer t contains 2t−1 vertices, except layer 0, which contains one vertex (the
root). Note also that each layer t node has exactly one child from each of layers
R,R− 1, . . . , t+ 1.
Remark. “Layer” should not be confused with “level”, i.e. the set of vertices at a
given distance from the root. Note that a layer contains links from many levels.

The Network Instance. Let us fix an integer R > 0 and δ ∈ (0, 1). For
simplicity of the argument, we assume that β = 1. We model the set LR of links
after the tree TR. Each link i ∈ LR corresponds to a vertex vi of the tree and
all the links are arranged on the real line. See Fig. 1 for an example. The links

Fig. 1. The set LR with R = 3.

corresponding to layer t vertices have length `R−t, where ` = cR1/γ = c log1/γ n,
γ = α · min{δ, 1 − δ} and c > 1 is a large enough constant to be determined
below. For instance, the “root link” has length `R and the “leaves” have length
1. Note also that ∆(LR) = `R. Links are numbered arbitrarily, from 1 to n. The
link corresponding to the root (leaves) of the tree is called root link (leaf links).
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Link j is called the parent of link i (and i is a child of link j) if vj is the parent
of vertex of vi. Link j is called a left sibling of a link i (and i is called a right
sibling of j) if lj < li and vi and vj have the same parent in the tree. We will
place the parent and all left siblings of each link i to the left from link i (no two
links occupy intersecting intervals in our construction). The descendants of link
i are the links corresponding to the set of nodes of the subtree rooted at vi.

The root is placed with its sender on the origin and the receiver at the
coordinate `R. Assume links i and j are so that the node corresponding to i is
the parent of the node of j in the tree (hence, li > lj). Moreover, assume that
the placement of link i has already been determined. Then we place link j so
that sj = ri + dji = ri + l1−δi lδj and rj = sj + lj . Such placement guarantees
that any two links corresponding to adjacent tree nodes cannot be in the same
Pδ-feasible set (recall that β = 1).
Analysis. The goal of the analysis below is to show that the set LR can be
scheduled in two sets, each corresponding to a color class in a proper 2-coloring
of tree TR. This is achieved by taking the constant c large enough. Having
this, it will follow immediately that NDFirstFit schedules LR into R slots, by
allocating a separate slot for each layer of links (as in the increasing order of
length, links come layer-by-layer), and, by the construction, no two layers can be
in the same slot. This yields an approximation lower bound Ω(R) = Ω(log n) =
Ω(log∆/ log log∆).

Let us give a taste of the analysis below, by considering the affectance between
a chain of three links; it will also give an idea why the construction cannot be
implemented for the uniform power scheme (i.e. when δ = 0). Let i, j, k be such
that i is the parent of j and j is the parent of k. The placement of the links
is such that the distance between e.g. j and k is dkj = l1−δj lδk, meaning that

aPδ(k, j) =

(
l1−δj lδk
dkj

)α
= 1, so j and k cannot coexist in the same feasible set,

nor can i and j. On the other hand, the distance between i and k is at least

dki > dji = l1−δi lδj . Hence, aPδ(k, j) <

(
l1−δi lδk
l1−δi lδj

)α
=
(
lk
lj

)αδ
= `−δα, which can

be made arbitrarily small by taking large constant c (note that this property
does not hold in the case of uniform power scheme, as δ = 0).
Analysis: Link Placement. First we show that if the constant c is large enough
then all the left siblings of a link i appear to the left of i. Note that if a link i
has length `s, then its descendants constitute an instance Ls (i.e. correspond to
the tree Ts). We start by computing the diameter d(Ls) of Ls for any s > 0, i.e.
the distance from the left-most node to the rightmost node of Ls.

Proposition 1. If ` ≥ 2 then, for any s > 0, `s < d(Ls) < 4`s.

Proposition 2. If link j is a left sibling of link k then link j and its descendants
are placed to the left from link k, provided that the constant c is large enough.

Proof. Let link i be the parent of links j, k and assume w.l.o.g. that li = `p,
lj = `t and lk = `t+1. We want link k to appear to the right of the whole
“subtree” of links rooted at link j (i.e. descendants of link j); namely, d(ri, sk) >
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d(ri, sj) + 2` · d(Lt). Since i is the parent of j and k, we have, by definition,
d(ri, sk) = `p·(1−δ) · `(t+1)·δ and d(ri, sj) = `p·(1−δ) · `t·δ. Thus, due to the bound
d(Lt) < 4`t, it suffices to have: `(1−δ)p+δ(t+1) > `(1−δ)p+δt + 8`t+1 or

`(1−δ)p+δt(`δ − 1) > 8`t+1.

Recall that p ≥ t+ 2 as link i is strictly longer than its children. Thus, assuming
` ≥ 21/δ, the requirement above boils down to `t−δ+2 > 8`t+1, and thus to

` > 8
1

1−δ which holds if the constant c is large enough. ut

Analysis: Affectance. Note that by the claim above, if links i and j are such
that li > lj and j is not a descendant of link i then d(i, j) > 2li.

Let us fix a link i with li = `p and let LiR denote the set of all links in LR
except the parent and the children of link i. We show that the affectance of link
i by links in LiR can be made arbitrarily small if the constant c is large enough.

We split LiR into the following subsets: Di - the descendants of i, Ai - links
that are longer than i,Bi - links that are shorter than i, excluding the descendants
of link i, and Ei – links of length li. Recall that γ = αmin{δ, 1− δ}. While the
following three claims follow relatively easily from the construction, the last one
requires more care.

Proposition 3. aPδ(Ei, i) + aPδ(i, Ei) = O(c−α).

Proposition 4. aPδ(Ai, i) + aPδ(i, Ai) = O(c−γ).

Proposition 5. aPδ(Di, i) + aPδ(i,Di) = O(c−γ).

Proposition 6. aPδ(Bi, i) + aPδ(i, Bi) = O(c−γ).

Proof. Let Bqi denote the set of length `q links in Bi. We collect the links of Bqi
into disjoint subsets S1, S2, . . . by “climbing” from link i towards the root, as
follows. Suppose we are at link i. The set S1 contains the links of Bqi that appear
in the interval between link i and its parent; the distance between each link in
S1 and link i is at least 2li = 2`p, and the number of such links is at most 2p−q.
S2 contains the links of Bqi that are descendants of the first right sibling of link i;
the distance between each link in S2 and link i is at least 2`p+1 and the number
of such links is at most 2p−q+1. S3 contains the links that are descendants of the
second right sibling of link i; the links in S3 are at a distance at least 2`p+2 and
the number of links in S3 is at most 2`p+3. After collecting the descendants of
all right siblings of link i, we move to the parent of link i and repeat the same
procedure. This process is carried on until reaching the root. Thus, we get the
following bound on the affectance by the links in Bqi :

aPδ(B
q
i , i) <

∑
t≥0

2p+t−q

(
`qδl1−δi

2`p+t

)α
< 2−α(`/2)−δα(p−q)

∑
t≥0

(`/2)−tα.

The last sum is clearly bounded by 2, given that ` > 4. Thus, we have that
aPδ(B

q
i , i) < (`/2)−δα < (c/2)−δα/R. The first part of the claim follows because

there are at most R different sets Bqi for a fixed link i. The second part follows
by a symmetric argument. ut
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Analysis: Conclusion. Thus, we have that the affectance of each link i from
all other links except its parent and children is small. In order to schedule the
set LR into two slots, it is enough to place each link separately from its parent
and children. Two slots are sufficient because of the tree topology.

Now let us see what happens when we run NDFirstFit on the set LR. Note
that when processing the links in a non-decreasing order of length we will process
all links of layer t+ 1 before the first link of layer t. Let St be the set of layer-t
links. We have, by the results above, that aPδ(St, i) + aPδ(i, St) < γ for any
constant γ and link i ∈ St. Thus, NDFirstFit puts the set SR in the first slot.
Each link in SR−1 conflicts with a link in SR (i.e. its child link), so the next slot
will consist of the set SR−1. In general, each layer t link conflicts with a link
from each of layers t + 1, t + 2, . . . , R, so by the reasoning above, NDFirstFit
schedules each layer in a separate slot (no two layers can occupy the same slot),
taking R + 1 slots in total for scheduling LR. Thus, the approximation ratio
of NDFirstFit is Ω(R) = Ω(log n). Also, recall that ∆(LR) = `R = cRR/γ , so
R = Ω( log∆

log log∆ ).
Note that the approximation ratio is multiplicative, as we can just multiply

each link k times (i.e. replace it with its k identical copies), for any k = poly(n).
Then the optimum number of slots required will be 2k, while NDFirstFit will
schedule the set into Ω(k ·R) = Ω(k · log kn) = Ω(k · log∆

log log∆ ) slots.

3.2 Scheduling with Power Control

In this section, we let NDFirstFitPC denote the first-fit scheduling algorithm
(with power control) of [29]. Here also, one starts with empty slots in a fixed
order, then the links are processed in non-decreasing order by length and a link
i is assigned to the first slot S such that a(S, i) < γ for a small constant γ. It is
known that NDFirstFitPC achieves O(log n) approximation [29]. Using similar
constructions as in the case of fixed power schemes, we prove the following.

Theorem 2. For each n0 > 0, there is a set of n > n0 links LR on the real
line such that NDFirstFitPC achieves no better than Ω(log n) = Ω( log∆

log log∆ )-
approximation for scheduling with power control.

The Construction. For the sake of simplicity, we assume in this section that
β > 2α: the lower bounds can be straightforwardly adapted for any constant
β > 1. The construction in this case is similar to the one for fixed power schemes
and is modeled after trees TR. Let us fix an integer R > 0. Each link i corresponds
to a vertex vi of the tree and all the links are arranged on the real line. The links
corresponding to layer t vertices have length `R−t, where ` = cR1/α = c log1/α n
and c > 1 is a large enough constant. The placement of links is similar to the
construction for fixed power schemes: each child link j of a link i is placed so
that sj = ri+d(i, j) = ri+ li and rj = sj+ lj , assuming link i has been placed. It
is known that if β > 2α, then the minimum distance between any two links that
are in the same slot must be greater than the length of the smaller one [25, Thm.
4]; hence, link placement as above guarantees that any two links corresponding
to adjacent tree nodes cannot be in the same slot.
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Analysis. As before, it can be shown that if the constant c is large enough then
all the left siblings of a link i appear to the left of link i.

Proposition 7. If link j is a left sibling of link k then link j and its descendants
are placed to the left from link k at a distance at least lk/2 from link k, provided
that ` > 6.

Note that by the claim above, if links i and j are such that li > lj and j is
not a descendant of link i then d(i, j) > li/2.

For any link i, let LiR denote the set of links in LR that are not longer than
link i, excluding the children of link i. Note that we do not need to consider links
longer than link i. The following claim is proved in a similar way as the analogous
results for fixed powers. In fact, the bounds here are stronger because we have
similar spacing between links as before, while the numerators of affectance are
smaller as we consider only the affectance by smaller links.

Proposition 8. a(LiR, i) = O(c−α).

The rest of the analysis is identical to the case of fixed powers.

4 Lower Bounds for Uniform Randomized Algorithms

Next we consider a generalization of the distributed algorithm presented in [31].
In this algorithm, the sender nodes of the links act in synchronous rounds and
each sender node transmits with probability pi or waits with probability 1− pi
in round i, where pi is the same for all links (but may change across the rounds).
Once the transmission succeeds in round i, the node is silent in subsequent
rounds.

Our construction in this case is modeled after a complete logb n-ary tree
with n nodes, where b > 0 is a constant, and is loosely based on [20, Thm.
6]. In [20], a similar lower bound is obtained for coloring interval graphs using
randomized distributed algorithms. It is worth to mention, however, that the
analysis of the algorithm here is done on sparser graphs (trees of cliques) than
in [20] (intersection graphs of laminar sets of intervals), but fortunately the
argument can be adapted.

The main challenge is to construct a family of network instances that are
structurally similar to logb n-ary trees. Namely, links correspond to adjacent
nodes in the tree are not Pδ-feasible together, but are otherwise well separated.

Theorem 3. Let δ ∈ (0, 1) and the probabilities pi(i = 1, 2, . . . ) be fixed. For
each n0 > 0, there is a set of n > n0 links L on the real line s.t. the random-
ized algorithm that uses probabilities pi(i = 1, 2, . . . ) yields only a Ω( logn

log logn ) =

Ω( log∆
log log∆ ) approximation for scheduling with power scheme Pδ, w.h.p.

The Construction. We assume in this section that β = 1. We start with the
description of a preliminary set S of links simulating a rooted complete logb n-
ary tree over a set of n/M nodes, where b > 1 is a constant to be chosen and
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M = O(nε) is a parameter with ε ∈ (0, 1) a constant. The main construction is
a simple extension of S. We will often mix the terminology of links and trees,
e.g. by speaking of children of links, hoping it does not cause confusion. We split
the tree into levels, where the root is at level 0 and the nodes at (tree-) distance
t from the root constitute level t. Note that the number of nodes at level t is
logtb n; hence, the number of levels is k = Θ

(
log(n/M)
log logn

)
= Θ

(
logn

log logn

)
. For each

t ≥ 0, the level-t links have uniform length `t. We set

`t = c`t+1 logd(t+1) n (2)

for large enough constants c, d > 0. We describe the placement of links on the
real line level by level, starting from level 0, which contains a single link i. We
set si = 0, ri = si + `0, as shown in Fig. 2. The children of link i have length `1.
We place the logb n child links of length `1 inside the interval occupied by the
link i, so that for any children j, k, it holds that (see Fig. 2):

1. d(j, k) ≥ e`1 for constant e > 1,

2. d(rj , ri) ≥ `1−δ0 `δ1/2,

3. d(sj , ri) ≤ `1−δ0 `δ1,

4. d(si, sj) ≥ `0/2.

Fig. 2. The first step of the construction of Thm. 3.

This completes the first step of the construction of S. The idea behind the
constraints above is to guarantee the following properties: 1. the set of links
at the same level is feasible, 2. the children interfere with the parent, 3. the
grandchildren do not interfere with their grandparent, 4. the parent does not
interfere the children (or their descendants). At the second step, we construct
the children of level-1 links in a similar manner, and continue this process until
having n/M links. As shown below, the length ratios defined by (2) ensure that
the construction is correct and, in particular, that no link can be in the same
feasible set as any of its children. On the other hand, we prove that the affectance
of any level-t link by all other links, except level-t − 1 and level-t + 1 links, is
small. This implies that the set S can be scheduled in a constant number of slots
using the power scheme Pδ.

In order to complete the construction, we replace each link in S with its M
identical copies. Let L denote this set of links. Note that |L| = n. Note that the
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optimum number of slots for scheduling L is at least M , as different copies of
the same link should be placed in different slots. Using the properties of set S,
we show that Θ(M) slots suffice.
Analysis: Properties of Set S. We start by proving the properties of the set
S. The first question to address is: what are the requirements on the lengths of
links for satisfying the constraints (1-4)? The first three constraints will hold if
`1−δ0 `δ1/2 > 3e`1 logb n, which holds if δ < 1 and the constants c, d in (2) are
large enough. The fourth constraint requires: `0 − `1−δ0 `δ1 > `0/2, which holds
if `0 > 21/δ`1. Thus, choosing the constants in (2) large enough guarantees the
constraints (1-4).

Now let us show that S can be scheduled in a constant number of slots. Let
St denote the set of level-t links for t ≥ 0.

Proposition 9. If the constants c, d in (2) are large enough, then for any level-t
link i (t ≥ 0), it holds that aPδ(T, i) < 1, where T = S \ (St−1 ∪ St+1).

Proof. First, let us bound the affectance by links from St. Recall that those
links have equal lengths and their mutual distances are at least e`t, by the first
constraint of the construction. Thus we have:

aPδ(St, i) < 2
∑
r≥1

(
`δt `

1−δ
t

re`t

)α
= O(e−α),

where the factor of 2 accounts for links on both sides of i. The last term can be
made arbitrarily small if constant c is large enough, because α > 1.

Now, let us fix an s > t + 1. The number of level-s links is |Ss| = logsb n.
The distance from each level-s link to ri is at least `1−δt `δt+1/2, by construction.
Thus, we have:

aPδ(Ss, i) ≤ |Ss|
`δαs `

(1−δ)α
t

(`1−δt `δt+1/2)α
= 2α|Ss|

(
`s
`t+1

)δα
.

Since the number of levels is O(log n), it is enough to have a(Ss, i)
e′

logn for any

constant e′ > 0, which is provided if

`t+1 > 21/δ(e′|Ss| log n)1/(δα)`s = 21/δe′1/(δα) log(sb+1)/(αδ) n`s.

The last inequality holds if we set d ≥ 2b/(αδ) and c ≥ 21/δe′1/(δα) in (2).
Next, let us consider a layer s < t−1 for t > 0. Recall that the distance from

each link of Ls to ri is at least `s/2, by construction. The affectance by Ss can

be bounded as follows: aPδ(Ss, i) ≤ |Ss|
`δαs `

(1−δ)α
t

(`s/2)α
< 2α|Ss|

(
`t
`s

)δα
.

Hence, again, we can easily get aPδ(Ss, i) <
e′

logn for any constant e′ > 0, by

tuning the constants c and d in (2). This yields the claim. ut

Thus, the set S can be scheduled into two feasible slots, by taking the union
of the odd-numbered levels in one slot and the union of the even-numbered levels
in another one. This directly implies that the set L can be scheduled in 2M slots.
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Analysis: The Lower Bound. It remains to prove that for any sequence
pi ∈ (0, 1), i = 1, 2 . . . , the randomized algorithm using the probabilities pi
will schedule L in Ω(kM) = Ω(M · logn

log logn ) = Ω(M · log∆
log log∆ ) slots, where the

last equality holds because ∆ = poly(n). To that end, it will be more convenient
to analyze the algorithm in terms of a conflict graph G corresponding to L,
rather than the set of links itself. The graph G is constructed by replacing each
vertex of a complete logb n-ary tree on n/M vertices with a M -clique, where
the cliques corresponding to two adjacent vertices form a 2M -clique. Obviously,
χ(G) = 2M . Level-t vertices in G are the vertices corresponding to level-t ver-
tices in the tree. Let the probabilities pi, i = 1, 2, . . . be fixed. We consider the
following variant of the algorithm with relaxed constraints on transmissions. In
round i, each remaining vertex v of G selects itself with probability pi and is re-
moved from the graph in this round if it selects itself and no neighbor is selected.
Lower-bounding the runtime of this algorithm for G implies a similar bound for
the original algorithm running on the set L of links, because any feasible set in
L corresponds to an independent set in G, i.e. we essentially neglect some part
of the interference when dealing with G, which can only make the algorithm use
less slots. The argument below is similar to the proof of [20, Thm. 6]. The main
idea is to show that whatever the values of pi are, the algorithm will remove the
vertices level by level, starting from the last level vertices. In particular, it will
take Θ(M) steps to start making essential impact on the next level. This gives
the desired bound Ω(k ·M).

Let Tt denote the first time step when the size of a level-t M -clique is halved.
Let Ht denote the event that for all s ≤ t, the size of the smallest level-s clique
is at least (1− 1/ log n)M before iteration Tt+1 + 1.

Proposition 10. Consider 0 ≤ t < k. Suppose that Tt+1 < M log n. Then

P[Ht] = 1−O(n−
M

130 logn+1).

Observe that given the event Ht, the difference between the times Tt+1 and Tt
is at least M/4 if n is large enough. Indeed, Ht implies that in round Tt+1,
the size of each clique in levels t, t − 1, . . . , 0 is at least 3M/4, and in order
for a clique of size 3M/4 to become less than M/2, at least M/4 rounds must

pass. Thus, P[Tt − Tt+1 ≥ M/4] ≥ P[Ht] = 1 − O(n−
M

130 logn+1) holds for each
fixed t. By the union bound, the probability that the event Tt+1 − Tt ≥M/4 is

violated for at least one t is at most O(k ·n−
M

130 logn+1) = O(n−
M

130 logn+2). Thus,
if M > 130c log n (recall that M = Θ(nε)), then with probability 1 − O(n2−c),
it takes at least k ·M/4 = Ω(M log n/ log log n) steps until all the vertices of the
graph are removed. This completes the lower bound argument.
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