
Frequent Elements with Witnesses in Data Streams
Christian Konrad

christian.konrad@bristol.ac.uk

Department of Computer Science, University of Bristol

Bristol, United Kingdom

ABSTRACT
Detecting frequent elements is among the oldest and most-studied

problems in the area of data streams. Given a stream of 𝑚 data

items in {1, 2, . . . , 𝑛}, the objective is to output items that appear at

least 𝑑 times, for some threshold parameter 𝑑 , and provably opti-

mal algorithms are known today. However, in many applications,

knowing only the frequent elements themselves is not enough:

For example, an Internet router may not only need to know the

most frequent destination IP addresses of forwarded packages, but

also the timestamps of when these packages appeared or any other

meta-data that “arrived” with the packages, e.g., their source IP

addresses.

In this paper, we introduce the witness version of the frequent

elements problem: Given a desired approximation guarantee 𝛼 ≥ 1

and a desired frequency 𝑑 ≤ Δ, where Δ is the frequency of the

most frequent item, the objective is to report an item together

with at least 𝑑/𝛼 timestamps of when the item appeared in the

stream (or any other meta-data that arrived with the items). We

give provably optimal algorithms for both the insertion-only and

insertion-deletion stream settings: In insertion-only streams, we

show that space Õ(𝑛 + 𝑑 · 𝑛
1

𝛼) is necessary and sufficient for every

integral 1 ≤ 𝛼 ≤ log𝑛. In insertion-deletion streams, we show that

space Õ(𝑛 ·𝑑
𝛼2
) is necessary and sufficient, for every 𝛼 ≤

√
𝑛.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms; Streaming models.

KEYWORDS
frequent elements, heavy hitters, data streams, algorithms, lower

bounds

ACM Reference Format:
Christian Konrad. 2018. Frequent Elements with Witnesses in Data Streams.

In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The streaming model of computation addresses the fundamental

issue that modern massive data sets are too large to fit into the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/1122445.1122456

Random-Access Memory (RAM) of modern computers. Typical

examples of such data sets are Internet traffic logs, financial trans-

action streams, and massive graphical data sets, such as the Web

graph and social network graphs. A data streaming algorithm re-

ceives its input piece by piece in a linear fashion and has access to

only a sublinear amount of memory. This prevents the algorithm

from seeing the input in its entirety at any one moment.

The Frequent Elements (FE) (or heavy hitters) problem is among

the oldest and most-studied problems in the area of data streams.

Given a stream 𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑚 of length 𝑚 with 𝑠𝑖 ∈ [𝑛], for
some integer 𝑛, the goal is to identify items in [𝑛] that appear at
least 𝑑 = 𝜖𝑚 times, for some 𝜖 > 0. This problem was first solved

by Misra and Gries in 1982 [37] and has since been addressed in

countless research papers (e.g. [8, 10, 11, 14, 17, 21, 31, 33, 36]),

culminating in provably optimal algorithms [10].

However, in many applications, only knowing the frequent items

themselves is insufficient, and additional application-specific data

is required. For example:

• Given a database log, a FE algorithm can be used to detect a

frequently updated (or queried) entry. However, users who

committed these updates (or queries) or the timestamps of

when these updates (or queries) were executed cannot be

reported by such an algorithm.

• Given a stream of friendship updates in a social network

graph, a FE algorithm can detect nodes of large degree (e.g.,

an influencer in a social network). Their neighbours (e.g.,

followers of an influencer), however, cannot be outputted by

such an algorithm.

• Given the traffic log of an Internet router logging times-

tamps, source, and destination IP addresses of forwarded

IP packages, Denial-of-Service attacks can be detected by

identifying distinct frequent elements, that is, frequent target

IP addresses that are requested from many distinct sources

[22]. Here, a (distinct) FE algorithm only reports frequent

target IP addresses and thus potential machines that were

under attack, however, the timestamps of when these attacks

occurred or the source IP addresses from where the attacks

originated remain unknown.

In this paper, we introduce the witness version of the frequent

elements problem, which captures the examples mentioned above.

This problem is formulated as a problem on graphs:

Problem 1 (Freqent Elements with Witnesses (FEwW). In

FEwW(𝑛,𝑑), the input consists of a bipartite graph𝐺 = (𝐴, 𝐵, 𝐸) with
|𝐴| = 𝑛 and |𝐵 | =𝑚 = poly𝑛, and a threshold parameter 𝑑 . We are

given the promise that there is at least one 𝐴-vertex of degree at least

𝑑 . The goal is to output an 𝐴-vertex together with at least 𝑑/𝛼 of its

neighbours, for some approximation factor 𝛼 ≥ 1.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Conference’17, July 2017, Washington, DC, USA Christian Konrad

FEwW allows us to model frequent elements problems where,

besides the frequent elements themselves, additional satellite data

that “arrives” togetherwith the input items also needs to be reported.

For example, in the database log example above, database entries can

be regarded as 𝐴-vertices, users as 𝐵-vertices, and updates/queries

as edges connecting entries to users. The incident edges of a node

reported by an algorithm for FEwW can be regarded as a “witness”

that proves that the node is indeed of large degree. The restriction

|𝐵 | = poly𝑛 is only imposed for convenience as it is reasonable and

simplifies the complexity bounds of our algorithms.

Our aim is to solve FEwW in two models of graph streams: In

the insertion-only model, a streaming algorithm receives the edges

of 𝐺 in arbitrary order. In the insertion-deletion model, a streaming

algorithm receives an arbitrary sequence of edge insertion and

deletions. In both models, the objective is to design algorithms with

minimal space.

Formulating FEwW as a graph problem has two advantages:

First, it allows for the same satellite data of different input items.

Second, a streaming algorithm for FEwW can be used to solve the

related Star Detection problem, a subgraph detection problem that

deserves attention in its own right:

Problem 2 (Star Detection). In Star Detection, the input is a
general graph 𝐺 = (𝑉 , 𝐸). The objective is to output the largest star
in𝐺 , i.e., determining a node of largest degree together with its neigh-

bourhood. An 𝛼-approximation algorithm (𝛼 ≥ 1) to Star Detection
outputs a node together with at least Δ/𝛼 of its neighbours, where Δ
is the maximum degree in the input graph.

For example, Star Detection can be used to solve the second

example mentioned above, i.e., finding influencers together with

their followers in social networks.

1.1 Our Results
In this paper, we resolve the space complexity of streaming algo-

rithms for FEwW in both insertion-only and insertion-deletion

streams up to poly-logarithmic factors.

In insertion-only streams, we give an 𝛼-approximation stream-

ing algorithm with space
1

Õ(𝑛 + 𝑛
1

𝛼 𝑑) that succeeds with high

probability
2
, for integral values of 𝛼 ≥ 1 (Theorem 3.2). We

complement this result with a lower bound, showing that space

Ω(𝑛/𝛼2+𝑛
1

𝛼−1𝑑/𝛼2) is necessary for every algorithm that computes

a 𝛼/1.01 approximation, for every integer 𝛼 ≥ 2 (Theorems 4.1
and 4.8). Observe that the latter result also implies a lower bound

of Ω(𝑛/𝛼2 +𝑛
1

𝛼 𝑑/𝛼2) for every 𝛼-approximation algorithm, where

𝛼 is integral. Up to poly-logarithmic factors, our algorithm is thus

optimal for every poly-logarithmic 𝛼 .

In insertion-deletion streams, we give an𝛼-approximation stream-

ing algorithm with space Õ(𝑑𝑛
𝛼2
) if 𝛼 ≤

√
𝑛, and space Õ(

√
𝑛𝑑
𝛼) if

𝛼 >
√
𝑛 that succeeds w.h.p. (Theorem 5.4). We complement our

algorithmwith a lower bound showing that space Ω̃(𝑑𝑛
𝛼2
) is required

1
We use 𝑂̃ , Θ̃, and Ω̃ to mean 𝑂 , Θ, and Ω (respectively) with poly-log factors

suppressed.

2
We say that an event occurs with high probability (in short: w.h.p.) if it happens with

probability at least 1 − 1

𝑛
, where 𝑛 is a suitable parameter associated with the input

size.

(Theorem 6.4), which renders our algorithm optimal (if 𝛼 ≤
√
𝑛)

up to poly-logarithmic factors.

Our lower bounds translate to Star Detection with parameter

𝑑 = Θ(𝑛), and our algorithms translate to Star Detection by set-

ting 𝑑 = Θ(𝑛) in the space bound and by introducing an addi-

tional log
1+𝜖 𝑛 factor in the space complexities and a 1 + 𝜖 factor

in the approximation ratios (Lemma 3.3). For example, a O(log𝑛)-
approximation to Star Detection can be computed in insertion-only

streams in space Õ(𝑛) (graph streaming algorithms with space Õ(𝑛)
are referred to as semi-streaming algorithms [23]), while such an

approximation would require space Ω̃(𝑛2) in insertion-deletion

streams.

1.2 Techniques
Our insertion-only streaming algorithm for FEwW makes use of

a subroutine that solves the following sampling task: For degree

bounds𝑑1 < 𝑑2 and an integer 𝑠 , compute a uniform random sample

of size 𝑠 of the𝐴-vertices of degree at least𝑑1, and, for every sampled

vertex 𝑎 ∈ 𝐴, compute min{𝑑2, deg(𝑎) −𝑑1 + 1} incident edges to 𝑎.
We say that this task succeeds if there is one sampled node for which

𝑑2 incident edges are computed. We give a streaming algorithm,

denoted Deg-Res-Sampling(𝑑1, 𝑑2, 𝑠), that solves this task, using a

combination of reservoir sampling [38] and degree counts. Next,

we run 𝛼 instances of Deg-Res-Sampling(𝑑1, 𝑑2, 𝑠) in parallel, for

changing parameter 𝑑1 = 𝑖 · 𝑑𝛼 , for 𝑖 = 0, 1, . . . , 𝛼 − 1, and fixed

parameters 𝑑2 = 𝑑
𝛼 and 𝑠 = Θ̃(𝑛1/𝛼). It can be seen that run 𝑖

succeeds if the ratio of the number of nodes of degree at least 𝑖 · 𝑑𝛼
to the number of nodes of degree at least (𝑖 + 1) · 𝑑𝛼 in the input

graph is not too large, i.e., in O(𝑛1/𝛼). We prove that this condition

is necessarily fulfilled for at least one of the parallel runs.

Our lower bound for insertion-only streams is the most technical

contribution of this paper. We show that a streaming algorithm for

FEwW can be used to solve a new multi-party one-way commu-

nication problem denoted Bit-Vector-Learning, where the bits of

multiple binary strings of different lengths are partitioned among

multiple parties. The last party is required to output enough bits of

at least one of the strings - this is difficult, since the partitioning is

done so that not a single party alone holds enough bits of any of

the strings. We prove a lower bound on the communication com-

plexity of Bit-Vector-Learning via information theoretic arguments,

which then translates to FEwW. A highlight of our technique is the

application of Baranyai’s theorem for colouring complete regular

hypergraphs [7], which allows us to partition and subsequently

quantify the information that is necessarily revealed when solving

Bit-Vector-Learning.

FEwW is much harder to solve in insertion-deletion streams

and requires a different set of techniques. Our insertion-deletion

streaming algorithm employs two sampling strategies: A vertex-

based sampling strategy that succeeds if the input graph is dense

enough, and an edge sampling strategy that succeeds if the input

graph is relatively sparse. We implement both sampling methods

using 𝑙0-sampling techniques [26].

Last, our lower bound for insertion-deletion streams is proved

in the one-way two-party communication model and is conceptu-

ally interesting since it extends the traditional one-way two-party

Frequent Elements with Witnesses in Data Streams Conference’17, July 2017, Washington, DC, USA

Augmented-Index communication problem to a suitable two di-

mensional version that may be of independent interest. Similar to

our lower bound for insertion-only streams, we use information-

theoretic arguments to prove a tight lower bound.

1.3 Further Related Work
As previousy mentioned, the traditional (without witnesses) FE

problem is very well studied, and many algorithms with different

properties are known, including Misra-Gries [37] (see also [20, 28]),

CountSketch [15], Count-min Sketch [17], multi-stage Bloom filters

[11], andmany others [9, 21, 31, 33, 35]. A crucial difference between

the witness and the without witness versions is that the space

complexities behave inversely with regards to the desired frequency

threshold parameter 1 ≤ 𝑑 ≤ 𝑚: Most streaming algorithms for

FE use space proportional to
𝑚
𝑑

(intuitively, the more often an

element appears in the stream, the easier it is to pick it up using

sampling), while the space is trivially Ω(𝑑/𝛼) for FEwW, since at

least𝑑/𝛼 witnesses need to be reported by the algorithm. In terms of

techniques, the two versions therefore have a very different flavour,

and the FEwW problem is perhaps closer in spirit to the literature

on graph streaming algorithms than to the (without witnesses)

frequent elements literature.

Graph streaming algorithms in the insertion-only model have

been studied since more than 20 years [25], and this model is fairly

well understood today (see [34] for an excellent survey). The first

techniques for processing insertion-deletion graph streams were

introduced in a seminal paper by Ahn et al. [1] in 2012. While

many problems, such as Connectivity [1], Spectral Sparsification

[27], and (Δ + 1)-colouring [2], are known to be equally hard in

both the insertion-only and the insertion-deletion settings (up to

a poly-logarithmic factor difference in the space requirements),

only few problems, such as Maximum Matching and Minimum

Vertex Cover, are known to be substantially harder in the insertion-

deletion setting [4, 19, 29]. In this paper, we prove that FEwW and

Star Detection are much harder in the insertion-deletion setting

than in the insertion-only setting, thereby establishing another

separation result between the two models.

Star Detection shares similarities with other subgraph approxi-

mation problems, such asMaximum Independent Set/Maximum

Clique [16, 24], Maximum Matching [4, 19, 23, 29, 30], and Mini-

mum Vertex Cover [19], which can all be solved approximately us-

ing sublinear (in 𝑛2
) space in both the insertion-only and insertion-

deletion settings.

1.4 Outline
We start with notations and definitions in Section 2. This section

also introduces the necessary context on communication complex-

ity needed in this work. In Section 3, we give our insertion-only

streams algorithm, and in Section 4, we present a matching lower

bound. Our algorithm for insertion-deletion streams is given in Sec-

tion 5, and we conclude with a matching lower bound in Section 6.

2 PRELIMINARIES
We consider simple bipartite graphs 𝐺 = (𝐴, 𝐵, 𝐸) with |𝐴| = 𝑛 and

|𝐵 | =𝑚 = poly(𝑛). The maximum degree of an 𝐴-node is denoted

by Δ. We say that a tuple (𝑎, 𝑆) ∈ 𝐴 × 2
𝐵
is a neighbourhood in

𝐺 if 𝑆 ⊆ Γ(𝑎). The size | (𝑎, 𝑆) | of (𝑎, 𝑆) is defined as | (𝑎, 𝑆) | =
|𝑆 |. Using this terminology, the objective of FEwW is to output a

neighbourhood of size at least 𝑑/𝛼 .
Let 𝐴 be a random variable distributed according to D. The

Shannon Entropy of 𝐴 is denoted by 𝐻D (𝐴), or simply 𝐻 (𝐴) if the
distribution D is clear from the context. The mutual information of

two jointly distributed random variables 𝐴, 𝐵 with distribution D
is denoted by 𝐼D (𝐴, 𝐵) := 𝐻D (𝐴) − 𝐻D (𝐴 | 𝐵) (again, D may be

dropped), where 𝐻D (𝐴 | 𝐵) is the entropy of 𝐴 conditioned on 𝐵.

For an overview on information theory we refer the reader to [18].

Communication Complexity
We now provide the necessary context on communication complex-

ity (see [32] for more information).

In the one-way 𝑝-party communication model, for 𝑝 ≥ 2, 𝑝 par-

ties 𝑃1, 𝑃2, . . . , 𝑃𝑝 communicate with each other to jointly solve a

problem. Each party 𝑃𝑖 holds their own private input 𝑋𝑖 and has

access to both private and public random coins. Communication is

one-way: 𝑃1 sends a message𝑀1 to 𝑃2, who then sends a message

𝑀2 to 𝑃3. This process continues until 𝑃𝑝 receives a message𝑀𝑝−1

from 𝑃𝑝−1 and then outputs the result.

The way the parties interact is specified by a communication

protocolΠ. We say thatΠ is an 𝜖-error protocol for a problem Prob if

it is correct with probability 1−𝜖 on any input (𝑋1, 𝑋2, . . . , 𝑋𝑝) that
is valid for Prob, where the probability is taken over the randomness

(both private and public) used by the protocol. The communication

cost of Π is the size of the longest message sent by any of the parties,

that is, max1≤𝑖≤𝑝−1{|𝑀𝑖 |}, where |𝑀𝑖 | is the maximum length of

message𝑀𝑖 . The randomized one-way communication complexity

𝑅→𝜖 (Prob) of a problem Prob is the minimum communication cost

among all 𝜖-error protocols Π.
Let D be any input distribution for a specific problem Prob. The

distributional one-way communication complexity of Prob, denoted

𝐷→D,𝜖
(Prob), is the minimum communication cost among all de-

terministic communication protocols for Prob that succeed with

probability at least 1 − 𝜖 , where the probability is taken over the

input distributionD. In order to prove lower bounds on 𝑅→𝜖 (Prob),
by Yao’s lemma it is enough to bound the distributional com-

munication complexity for any suitable input distribution since

𝑅→𝜖 (Prob) = maxD 𝐷→D,𝜖
(Prob). In our lower bound arguments

we will therefore consider deterministic protocols with distribu-

tional error. This is mainly for convenience as this allows us to

disregard public and private coins. We note, however, that with

additional care about private and public coins, our arguments also

directly apply to randomized protocols.

Our lower bound arguments follow the information complexity

paradigm. There are various definitions of information complexity

(e.g. [5, 6, 13]), and for the sake of simplicity we will in fact omit

a precise definition. Information complexity arguments typically

measure the amount of information revealed by a communication

protocol about the inputs of the participating parties. This quantity

is a natural lower bound on the total amount of communication,

since the amount of information revealed cannot exceed the number

of bits exchanged.Wewill follow this approach in that we give lower

bounds on quantities of the form 𝐼D (𝑋𝑖 : 𝑀𝑗), for some 𝑗 ≥ 𝑖 + 1.

This then implies a lower bound on the communication complexity

Conference’17, July 2017, Washington, DC, USA Christian Konrad

of a specific problem Prob since 𝐼D (𝑋𝑖 : 𝑀𝑗) ≤ 𝐻D (𝑀𝑗) ≤ |𝑀𝑗 |
holds for any protocol.

3 ALGORITHM FOR INSERTION-ONLY
STREAMS

Before presenting our algorithm for FEwW in insertion-only streams,

we discuss a sampling subroutine that combines reservoir sampling

with degree counts.

3.1 Degree-based Reservoir Sampling
The subroutine Deg-Res-Sampling(𝑑1, 𝑑2, 𝑠) samples 𝑠 nodes uni-

formly at random from the set of nodes of degree at least 𝑑1,

and for each of these nodes computes a neighbourhood of size

min{𝑑2, deg−𝑑1 + 1}, where deg is the degree of the respective

node. If at least one neighbourhood of size 𝑑2 is found then we say

that the algorithm succeeds and returns an arbitrary neighbourhood

among the stored neighbourhoods of sizes 𝑑2. Otherwise, we say

that the algorithm fails and it reports fail.
This is achieved as follows: While processing the stream of edges,

the degrees of all 𝐴-vertices are maintained. The algorithm main-

tains a reservoir of size 𝑠 that fulfils the invariant that, at any

moment, it contains a uniform sample of size 𝑠 of the set of nodes

whose current degrees are at least 𝑑1 (or, in case there are fewer

than 𝑠 such nodes, it contains all such nodes). To this end, as soon

as the degree of an 𝐴-vertex reaches 𝑑1, the vertex is introduced

into the reservoir with an appropriate probability (and another

vertex is removed if the reservoir is already full), so as to maintain

a uniform sample. Once a vertex is introduced into the reservoir,

incident edges to this vertex are collected until 𝑑2 such edges are

found.

Algorithm 1 Deg-Res-Sampling(𝑑1, 𝑑2, 𝑠)
Require: Integral degree bounds 𝑑1 and 𝑑2, reservoir size 𝑠

1: 𝑅 ← {} {reservoir}, 𝑆 ← {} {collected edges}, 𝑥 ← 0 {counter

for nodes of degree ≥ 𝑑1}

2: while stream not empty do
3: Let 𝑎𝑏 be next edge in stream

4: Increment degree deg(𝑎) by one

5: if deg(𝑎) = 𝑑1 then {candidate to be inserted into reservoir}

6: 𝑥 ← 𝑥 + 1

7: if |𝑅 | < 𝑠 then {reservoir not yet full}

8: 𝑅 ← 𝑅 ∪ {𝑎}
9: else {reservoir full}
10: if Coin(𝑠

𝑥
) then {insert 𝑎 into reservoir with prob.

𝑠
𝑥 }

11: Let 𝑎′ be a uniform random element in 𝑅

12: 𝑅 ← (𝑅 \ {𝑎′}) ∪ {𝑎}, delete all edges incident to 𝑎′
from 𝑆

13: if 𝑎 ∈ 𝑅 and deg𝑆 (𝑎) < 𝑑2 then {collect edge}

14: 𝑆 ← 𝑆 ∪ {𝑎𝑏}
15: return Arbitrary neighbourhood among those of size 𝑑2 in 𝑆 ,

if there is none return fail

The description of Algorithm 1 assumes that we have a function

Coin(𝑝) to our disposal that outputs true with probability 𝑝 and

false with probability 1 − 𝑝 .

Disregarding the maintenance of the vertex degrees, the algo-

rithm uses space 𝑂 (𝑠𝑑2 log𝑛) since at most 𝑑2 neighbours for each

vertex in the reservoir are stored, and we account space O(log𝑛)
for storing an edge.

Lemma 3.1. Suppose that𝐺 contains at most 𝑛1 𝐴-nodes of degree

at least 𝑑1 and at least 𝑛2 𝐴-nodes of degree at least 𝑑1 +𝑑2 − 1. Then,

Algorithm Deg-Res-Sampling(𝑑1, 𝑑2, 𝑠) succeeds with probability at

least

1 − (1 − 𝑠

𝑛1

)𝑛2 ≥ 1 − 𝑒−
𝑠𝑛

2

𝑛
1 .

Proof. Let 𝐷 ⊆ 𝑉 be the set of vertices of degree at least 𝑑1

(then |𝐷 | ≤ 𝑛1). First, suppose that 𝑑1 ≤ 𝑠 . Then the algorithm

stores all nodes of degree at least 𝑑1 (including all nodes of degree

𝑑1+𝑑2−1) and collects its incident edges (except the first 𝑑1−1 such

edges). Hence, a neighbourhood of size 𝑑2 is necessarily found.

Otherwise, by well-known properties of reservoir sampling (e.g.

[38]), at the end of the algorithm the set 𝑅 constitutes a uniform

random sample of𝐷 of size 𝑠 . The probability that no node of degree

at least 𝑑1 + 𝑑2 − 1 is sampled is at most:(𝑛1−𝑛2

𝑠

)(𝑛1

𝑠

) =
(𝑛1 − 𝑛2)!(𝑛1 − 𝑠)!
(𝑛1 − 𝑛2 − 𝑠)!𝑛1!

=
(𝑛1 − 𝑠) · (𝑛1 − 𝑠 − 1) · . . . · (𝑛1 − 𝑠 − 𝑛2 + 1)

𝑛1 · (𝑛1 − 1) · . . . · (𝑛1 − 𝑛2 + 1)

≤
(
𝑛1 − 𝑠
𝑛1

)𝑛2

= (1 − 𝑠

𝑛1

)𝑛2 ≤ 𝑒
− 𝑠𝑛

2

𝑛
1 .

□

3.2 Main Algorithm
Our main algorithm runs the subroutine presented in the previous

subsection in parallel for multiple different threshold values 𝑑1. We

will prove that the existence of a node of degree 𝑑 implies that at

least one of these runs will succeed with high probability.

Algorithm 2 𝛼-approximation Streaming Algorithm for FEwW

Require: Degree bound 𝑑 , approximation factor 𝛼

𝑠 ← ⌈ln(𝑛) · 𝑛
1

𝛼 ⌉
for 𝑖 = 0 . . . 𝛼 − 1 do in parallel
(𝑎𝑖 , 𝑆𝑖) ← Deg-Res-Sampling(max{1, 𝑖 · 𝑑𝛼 },

𝑑
𝛼 , 𝑠)

return Any neighbourhood (𝑎𝑖 , 𝑆𝑖) among the successful runs

Theorem 3.2. Suppose that the input graph𝐺 = (𝐴, 𝐵, 𝐸) contains
at least one 𝐴-node of degree at least 𝑑 . For every integral 𝛼 ≥ 2,

Algorithm 2 finds a neighbourhood of size
𝑑
𝛼 with probability at least

1 − 1

𝑛 and uses space

O(𝑛 log𝑛 + 𝑛
1

𝛼 𝑑 log
2 𝑛) .

Proof. Concerning the space bound, the algorithm needs to

keep track of the degrees of all 𝐴-vertices which requires space

𝑂 (𝑛 log𝑛) (using the assumption𝑚 = poly𝑛). The algorithm runs

the subroutine Deg-Res-Sampling (Algorithm 1) 𝛼 times in par-

allel. Each of these runs requires space O(𝑠 · 𝑑𝛼 log𝑛). Besides the
vertex degrees, we thus have an additional space requirement of

Frequent Elements with Witnesses in Data Streams Conference’17, July 2017, Washington, DC, USA

𝑂 (𝑠 · 𝑑 log𝑛) = 𝑂 (𝑛
1

𝛼 𝑑 log
2 𝑛) bits, which justifies the space re-

quirements.

Concerning correctness, let 𝑛0 be the number of 𝐴-nodes of

degree at least 1, and for 𝑖 ≥ 1, let 𝑛𝑖 be the number of 𝐴-nodes of

degree at least 𝑖 · 𝑑𝛼 . Observe that 𝑛 ≥ 𝑛0 ≥ 𝑛1 ≥ 𝑛2 ≥ · · · ≥ 𝑛𝛼 ≥ 1,

where the last inequality follows from the assumption that the input

graph contains at least one 𝐴-node of degree at least 𝑑 .

We will prove that at least one of the runs succeeds with prob-

ability at least 1 − 1

𝑛 . For the sake of a contradiction, assume that

the error probability of every run is strictly larger than
1

𝑛 . Then,

using Lemma 3.1, we obtain for every 0 ≤ 𝑖 ≤ 𝛼 − 1:

𝑒
− 𝑠𝑛𝑖+1

𝑛𝑖 >
1

𝑛
, which implies

𝑛𝑖+1 <
ln(𝑛)𝑛𝑖

𝑠
.

Since 𝑛0 ≤ 𝑛 we obtain:

𝑛𝑖 < 𝑛

(
ln𝑛

𝑠

)𝑖
,

and since 𝑛𝑐 ≥ 1 we have:

1 < 𝑛

(
ln𝑛

𝑠

)𝛼
which implies 𝑠 < 𝑛

1

𝛼 ln𝑛 .

However, since the reservoir size in Algorithm 2 is chosen to be

⌈𝑛
1

𝛼 ln𝑛⌉, we obtain a contradiction. Hence, at least one run suc-

ceeds with probability 1 − 1/𝑛. □

3.3 Extension to Star Detection
Streaming algorithms for FEwW can be used to solve Star Detection

with a small increase in space and approximation ratio.

Lemma 3.3. Let A be a one-pass 𝛼-approximation streaming al-

gorithm for FEwW with space 𝑠 (𝑛,𝑑) that succeeds with probability

1 − 𝛿 . Then there exists a one-pass (1 + 𝜖)𝛼-approximation streaming

algorithm for Star Detection with space O(𝑠 (𝑛, 𝑛) · log
1+𝜖 𝑛) that

succeeds with probability 1 − 𝛿 .

Proof. Let 𝐺 = (𝑉 , 𝐸) be the graph described by the input

stream in an instance of Star Detection. We use O(log
1+𝜖 𝑛) guesses

Δ′ ∈ {1, 1 + 𝜖, (1 + 𝜖)2, . . . , (1 + 𝜖) ⌈log
1+𝜖 𝑛⌉ } for Δ, the maximum

degree in the input graph. For each guess Δ′ we run algorithm

A for FEwW with threshold value 𝑑 = Δ′ on the bipartite graph

𝐻 = (𝑉 ,𝑉 , 𝐸 ′), where for every edge 𝑢𝑣 in the input stream, we

include the two edges 𝑢𝑣 and 𝑣𝑢 into 𝐻 .

Consider the run with the largest value for Δ′ that is not larger
than Δ. Then, Δ′ ≥ Δ/(1 + 𝜖). This run finds a neighbourhood of

size at least Δ′/𝛼 ≥ Δ/(𝛼 (1 + 𝜖)) and thus a large star in 𝐺 . □

The previous result in combination with Theorem 3.2 can be

used to obtain a semi-streaming algorithm for Star Detection (by

using any fixed constant 𝜖 and 𝛼 = log𝑛 in the previous lemma).

Corollary 3.4. There is a semi-streamingO(log𝑛)-approximation

algorithm for Star Detection that succeeds with high probability.

4 LOWER BOUND FOR INSERTION-ONLY
STREAMS

In this section, we first point out that a simple Ω(𝑛/𝛼2) lower bound
follows from the one-way communication complexity of a multi-

party version of the Set-Disjointness problem. Next, we give some

important inequalities involving entropy and mutual information

that are used subsequently. Then, we prove our main lower bound

result of this section. To this end, we first define the multi-party

one-way communication problem Bit-Vector Learning and prove a

lower bound on its communication complexity. We then show that

a streaming algorithm for FEwW yields a protocol for Bit-Vector

Learning, which gives the desired lower bound.

4.1 An Ω(𝑛/𝛼2) Lower Bound via Multi-party
Set-Disjointness

Consider the one-way multi-party version of the well-known Set-

Disjointness problem:

Problem 3 (Set-Disjointness𝑝). Set-Disjointness𝑝 is a 𝑝-party

communication problem where every party 𝑖 holds a subset 𝑆𝑖 ⊆ U
of a universeU of size 𝑛. The parties are given the promise that either

their sets are pairwise disjoint, i.e., 𝑆𝑖 ∩𝑆 𝑗 = ∅ for every 𝑖 ≠ 𝑗 , or they

uniquely intersect, i.e., | ∩𝑖 𝑆𝑖 | = 1. The goal is to determine which is

the case.

It is known that every 𝜖-error protocol for Set-Disjointness𝑝
requires a total communication ofΩ(𝑛/𝑝) bits [12]. Since our notion
of one-way multi-party communication complexity measures the

maximum length of any message sent in an optimal protocol, we

obtain:

𝑅→𝜖 (Set-Disjointness𝑝) = Ω(𝑛/𝑝2) .
We now argue that an algorithm for FEwW can be used to solve

Set-Disjointness𝑝 .

Theorem 4.1. Every 𝛼/1.01-approximation streaming algorithm

for FEwW(𝑛,𝑑) requires space Ω(𝑛/𝛼2), for any integral 𝛼 and for

any 𝑑 = 𝑘 · 𝛼 , where 𝑘 is a positive integer.

Proof. Let (𝑆1, 𝑆2, . . . , 𝑆𝑝) be an instance of Set-Disjointness𝑝 .

For 𝛼 = 𝑝/1.01, let A be an 𝛼-approximation streaming algorithm

for FEwW, and let 𝑑 = 𝑘 · 𝑝 , for some integer 𝑘 ≥ 1. The parties use

A to solve Set-Disjointness𝑝 as follows: The 𝑝-parties construct a

graph 𝐺 = (U, 𝐵, 𝐸) with 𝐵 = [𝑑] and 𝐸 = ∪𝑝
𝑖=1

𝐸𝑖 . Each party 𝑖

translates 𝑆𝑖 into the set of edges 𝐸𝑖 where for each𝑢 ∈ 𝑆𝑖 the edges
{𝑢𝑏 : 𝑏 ∈ {(𝑖−1)𝑑/𝑝+1, . . . , 𝑖𝑑/𝑝}} are included in 𝐸𝑖 . Observe that
Δ = 𝑑/𝑝 = 𝑘 if all sets 𝑆𝑖 are pairwise disjoint, and Δ = 𝑑 = 𝑘 · 𝑝 if

they uniquely intersect. Party 1 now simulates A on their edges 𝐸1,

sends the resulting memory state to party 2 who continues running

A on 𝐸2. This continues until party 𝑝 completes the algorithm. Since

A is a 𝑝/1.01-approximation algorithm, if the sets uniquely intersect,

the output of the algorithm is a neighbourhood of size at least ⌈Δ𝛼 ⌉ =
⌈1.01 ·𝑘⌉ ≥ 𝑘+1. If the sets are disjoint, then no neighbourhood is of

size larger than 𝑘 . The last party can thus distinguish between the

two cases and solve Set-Disjointness𝑝 . Since at least one message

used in the protocol is of length Ω(𝑛/𝑝2), A uses space Ω(𝑛/𝑝2) =
Ω(𝑛/𝛼2).

□

Conference’17, July 2017, Washington, DC, USA Christian Konrad

4.2 Inequalities Involving Entropy and Mutual
Information

In the following, we will use various properties of entropy and

mutual information. The most important ones are listed below: (let

𝐴, 𝐵,𝐶 be jointly distributed random variables)

(1) Chain Rule for Entropy: 𝐻 (𝐴𝐵 | 𝐶) = 𝐻 (𝐴 | 𝐶) + 𝐻 (𝐵 | 𝐴𝐶)
(2) Conditioning reduces Entropy: 𝐻 (𝐴) ≥ 𝐻 (𝐴 | 𝐵) ≥ 𝐻 (𝐴 | 𝐵𝐶)
(3) Chain Rule for Mutual Information: 𝐼 (𝐴 : 𝐵𝐶) = 𝐼 (𝐴 : 𝐵) +

𝐼 (𝐴 : 𝐶 | 𝐵)
(4) Data Processing Inequality:

3
Suppose that 𝐶 is a deterministic

function of 𝐵. Then: 𝐼 (𝐴 : 𝐵) ≥ 𝐼 (𝐴 : 𝐶)
(5) Independent Events: Let 𝐸 be an event independent of 𝐴, 𝐵,𝐶 .

Then: 𝐼 (𝐴 : 𝐵 | 𝐶, 𝐸) = 𝐼 (𝐴 : 𝐵 | 𝐶)
We will also use the following claim: (see Claim 2.3. in [3] for a

proof)

Lemma 4.2. Let 𝐴, 𝐵,𝐶, 𝐷 be jointly distributed random variables

so that 𝐴 and 𝐷 are independent conditioned on 𝐶 . Then: 𝐼 (𝐴 :

𝐵 | 𝐶𝐷) ≥ 𝐼 (𝐴 : 𝐵 | 𝐶).

4.3 Hard Communication Problem: Bit-Vector
Learning

We consider the following one-way 𝑝-party communication game:

Problem 4 (Bit-Vector Learning(𝑝, 𝑛, 𝑘)). Let 𝑋1 = [𝑛] and
for every 2 ≤ 𝑖 ≤ 𝑝 , let 𝑋𝑖 be a uniform random subset of 𝑋𝑖−1

of size 𝑛𝑖 = 𝑛
1− 𝑖−1

𝑝−1
. Furthermore, for every 1 ≤ 𝑖 ≤ 𝑝 and every

1 ≤ 𝑗 ≤ 𝑛, let 𝑌
𝑗
𝑖
∈ {0, 1}𝑘 be a uniform random bit-string if

𝑗 ∈ 𝑋𝑖 , and let 𝑌
𝑗
𝑖
= 𝜖 (the empty string) if 𝑗 ∉ 𝑋𝑖 . For 𝑗 ∈ [𝑛], let

𝑍 𝑗 = 𝑌
𝑗

1
◦ 𝑌 𝑗

2
◦ · · · ◦ 𝑌 𝑗

𝑝 be the bit string obtained by concatenation.

Party 𝑖 holds 𝑋𝑖 and 𝑌𝑖 := 𝑌 1

𝑖
, . . . , 𝑌𝑛

𝑖
. Communication is one way

from party 1 through party 𝑝 and party 𝑝 needs to output an index

𝐼 ∈ [𝑛] and at least 1.01𝑘 bits from string 𝑍 𝐼
.
4

Observe that the previous definition also defines an input dis-

tribution. All subsequent entropy and mutual information terms

refer to this distribution. An example instance of Bit-Vector Learn-

ing(3, 4, 5) is given in Figure 1.

In the following, for a subset 𝑆 ⊆ [𝑛], we will use the nota-

tion 𝑌𝑆
𝑖
, which refers to the strings 𝑌

𝑠1

𝑖
, 𝑌

𝑠2

𝑖
, . . . , 𝑌

𝑠 |𝑆 |
𝑖

, where 𝑆 =

{𝑠1, 𝑠2, . . . , 𝑠 |𝑆 |}.
Observe further that there is a protocol that requires no com-

munication and outputs an index 𝐼 and 𝑘 bits of 𝑍 𝐼
: Party 𝑝 simply

outputs the single element 𝐼 ∈ 𝑋𝑝 together with the bit string 𝑌 𝐼
𝑝 .

As our main result of this section we show that every protocol that

outputs at least 1.01𝑘 bits of any string 𝑍 𝑖
(𝑖 ∈ [𝑛]) needs to send

at least one message of length Ω(𝑘𝑛
1

𝑝−1

𝑝).
Remark: For ease of presentation, we will only consider values

of 𝑛 so that 𝑛
1

𝑝−1
is integral. This condition implies that 𝑛𝑖+1 | 𝑛𝑖

for every 1 ≤ 𝑖 ≤ 𝑝 − 1 since
𝑛𝑖
𝑛𝑖+1

= 𝑛
1

𝑝−1
. The reason for this

3
Technically the data processing inequality is more general, however, the inequality

stated here is sufficient for our purposes.

4
More formally, the output is an index 𝐼 ∈ [𝑛] and a set of tuples

{(𝑖1, 𝑍̃1), (𝑖2, 𝑍̃2), . . . } of size at least 1.01𝑘 with 𝑖 𝑗 ≠ 𝑖𝑘 for every 𝑗 ≠ 𝑘 so that

𝑍 𝐼 [𝑖 𝑗] = 𝑍̃ 𝑗 , for every 𝑗 .

Alice

𝑋1 = {1, 2, 3, 4}

𝑌 1

1
= 10010

𝑌 2

1
= 01000

𝑌 3

1
= 01011

𝑌 4

1
= 01111

Bob

𝑋2 = {1, 4}

𝑌 1

2
= 11011

𝑌 2

2
= 𝜖

𝑌 3

2
= 𝜖

𝑌 4

2
= 01010

Charlie

𝑋3 = {4}

𝑌 1

3
= 𝜖

𝑌 2

3
= 𝜖

𝑌 3

3
= 𝜖

𝑌 4

3
= 00011

𝑀1 𝑀2

Figure 1: Example instance of Bit-Vector Learning(3, 4, 5).
Charlie needs to output at least 1.01 · 5 positions (i.e., at least
6 positions) of one of the strings 𝑍 1 = 1001011011, 𝑍 2 = 01000,
𝑍 3 = 01011, or 𝑍 4 = 011110101000011.

restriction is that we will apply Baranyai’s theorem [7], which is

stated as Theorem 4.4 below and requires this property. This can

be avoided using additional case distinctions.

4.4 Lower Bound Proof for Bit-Vector Learning
Fix now an arbitrary deterministic protocol Π for Bit-Vector Learn-

ing(𝑝, 𝑛, 𝑘) with distributional error 𝜖 . Let𝑂𝑢𝑡 = (𝐼 , 𝑍 𝐼) denote the
neighbourhood outputted by the protocol. Furthermore, denote by

𝑀𝑖 the message sent from party 𝑖 to party 𝑖 + 1. Throughout this

section let 𝑠 = max𝑖 |𝑀𝑖 |.
Since the last party correctly identifies 1.01𝑘 bits of 𝑍 𝐼

, the mu-

tual information between 𝑍 𝐼
and all random variables known to

the last party, that is, 𝑀𝑝−1, 𝑋𝑝 and 𝑌𝑝 , needs to be large. This is

proved in the next lemma:

Lemma 4.3. We have:

𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑍 𝐼) ≥ (1 − 𝜖)1.01𝑘 − 1 .

Proof. We will first bound the term 𝐼 (𝑂𝑢𝑡 : 𝑍 𝐼) = 𝐻 (𝑍 𝐼) −
𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡). To this end, let 𝐸 be the indicator variable of the event

that the protocol errs. Then, P[𝐸 = 1] ≤ 𝜖 . We have:

𝐻 (𝐸, 𝑍 𝐼 | 𝑂𝑢𝑡) = 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡) + 𝐻 (𝐸 | 𝑂𝑢𝑡, 𝑍 𝐼)
= 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡) , (1)

where we used the chain rule for entropy and the observation that 𝐸

is fully determined by𝑂𝑢𝑡 and𝑍 𝐼
which implies𝐻 (𝐸 |𝑂𝑢𝑡, 𝑍 𝐼) = 0.

Furthermore,

𝐻 (𝐸, 𝑍 𝐼 | 𝑂𝑢𝑡) = 𝐻 (𝐸 | 𝑂𝑢𝑡) + 𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡)
≤ 1 + 𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡) , (2)

using the chain rule for entropy and the bound 𝐻 (𝐸 | 𝑂𝑢𝑡) ≤
𝐻 (𝐸) ≤ 1 (conditioning reduces entropy). From Inequalities 1 and

2 we obtain:

𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡) ≤ 1 + 𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡) . (3)

Next, we bound the term 𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡) as follows:
𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡) = P [𝐸 = 0] 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡, 𝐸 = 0)

+ P [𝐸 = 1] 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡, 𝐸 = 1) . (4)

Concerning the term 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡, 𝐸 = 0), since no error occurs,

𝑂𝑢𝑡 already determines at least 1.01𝑘 bits of 𝑍 𝐼
. We thus have

that 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡, 𝐸 = 0) ≤ 𝐻 (𝑍 𝐼) − 1.01𝑘 . We bound the term

Frequent Elements with Witnesses in Data Streams Conference’17, July 2017, Washington, DC, USA

𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡, 𝐸 = 1) by 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡, 𝐸 = 1) ≤ 𝐻 (𝑍 𝐼) (since condi-
tioning can only decrease entropy). The quantity 𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡)
can thus be bounded as follows:

𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡) ≤ (1 − 𝜖) (𝐻 (𝑍 𝐼) − 1.01𝑘) + 𝜖𝐻 (𝑍 𝐼)
= 𝐻 (𝑍 𝐼) − (1 − 𝜖)1.01𝑘 . (5)

Next, using Inequalities 3 and 5, we thus obtain:

𝐼 (𝑂𝑢𝑡 : 𝑍 𝐼) = 𝐻 (𝑍 𝐼) − 𝐻 (𝑍 𝐼 | 𝑂𝑢𝑡)
≥ 𝐻 (𝑍 𝐼) − 1 − 𝐻 (𝑍 𝐼 | 𝐸,𝑂𝑢𝑡)
≥ 𝐻 (𝑍 𝐼) − 1 − (𝐻 (𝑍 𝐼) − (1 − 𝜖)1.01𝑘)
= (1 − 𝜖)1.01𝑘 − 1 .

Last, observe that𝑂𝑢𝑡 is a function of𝑀𝑝−1, 𝑋𝑝 , and 𝑌𝑝 . The result

then follows from the data processing inequality. □

Next, since the set 𝑋𝑖 is a uniform random subset of 𝑋𝑖−1, we

will argue in Lemma 4.5 that the message 𝑀𝑖−1 can only contain

a limited amount of information about the bits 𝑌
𝑋𝑖

𝑖−1
. This will be

stated as a suitable conditional mutual information expression that

will be used later. The proof of Lemma 4.5 relies on Baranyai’s

theorem [7], which in its original form states that every complete

regular hypergraph is 1-factorisable, i.e., the set of hyperedges can

be partitioned into 1-factors.We restate this theorem as Theorem 4.4

in a form that is more suitable for our purposes.

Theorem 4.4 (Baranyai’s theorem [7] - rephrased). Let 𝑘, 𝑛

be integers so that 𝑘 | 𝑛. Let 𝑆 ⊆ 2
[𝑛]

be the set consisting of all

subsets of [𝑛] of cardinality 𝑘 . Then there exists a partition of 𝑆 into

|𝑆 | 𝑘𝑛 subsets 𝑆1, 𝑆2, . . . , 𝑆 |𝑆 | 𝑘
𝑛

such that:

(1) |𝑆𝑖 | = 𝑛
𝑘
, for every 𝑖 ,

(2) 𝑆𝑖 ∩ 𝑆 𝑗 = ∅, for every 𝑖 ≠ 𝑗 , and

(3)

⋃
𝑥 ∈𝑆𝑖 𝑥 = [𝑛], for every 𝑖 .

Lemma 4.5. Suppose that 𝑛𝑖 | 𝑛𝑖−1. Then:

𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖) ≤

𝑛𝑖

𝑛𝑖−1

|𝑀𝑖−1 | .

Proof. First, using Lemma 4.2, we obtain 𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖) ≤

𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖𝑋𝑖−1) (observe that 𝑌𝑋𝑖

𝑖−1
and 𝑋𝑖−1 are indepen-

dent conditioned on 𝑋𝑖). Then, using the definition of conditional

mutual information, we rewrite as follows:

𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖𝑋𝑖−1)

= E
𝑥𝑖−1←𝑋𝑖−1

E
𝑥𝑖←𝑋𝑖

𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖 = 𝑥𝑖 , 𝑋𝑖−1 = 𝑥𝑖−1)

= E
𝑥𝑖−1←𝑋𝑖−1

E
𝑥𝑖←𝑋𝑖

𝐼 (𝑀𝑖−1 : 𝑌
𝑥𝑖
𝑖−1
| 𝑋𝑖−1 = 𝑥𝑖−1) . (6)

Let X(𝑥𝑖−1) be the set of all subsets of 𝑥𝑖−1 of size 𝑛𝑖 . Observe

that the distribution of 𝑋𝑖 is uniform among the elements X(𝑥𝑖−1).
Next, since 𝑛𝑖 | 𝑛𝑖−1, by Baranyai’s theorem [7] as stated in Theo-

rem 4.4, the set X(𝑥𝑖−1) can be partitioned into |X(𝑥𝑖−1) | 𝑛𝑖𝑛𝑖−1

sub-

sets X1 (𝑥𝑖−1),X2 (𝑥𝑖−1), . . . such that ∪𝑥 ∈X𝑗 (𝑥𝑖−1)𝑥 = 𝑥𝑖−1. Denote

the elements of set X𝑗 (𝑥𝑖−1) by 𝑥1

𝑗
, 𝑥2

𝑗
, . . . , 𝑥

𝑛𝑖−1

𝑛𝑖

𝑗
. We thus have:

E
𝑥𝑖←𝑋𝑖

𝐼 (𝑀𝑖−1 : 𝑌
𝑥𝑖
𝑖−1
| 𝑋𝑖−1 = 𝑥𝑖−1)

=
1

|X(𝑥𝑖−1) |
∑︁

𝑥𝑖 ∈X(𝑥𝑖−1)
𝐼 (𝑀𝑖−1 : 𝑌

𝑥𝑖
𝑖−1
| 𝑋𝑖−1 = 𝑥𝑖−1)

=
1

|X(𝑥𝑖−1) |
∑︁

𝑗 ∈[|X(𝑥𝑖−1) | 𝑛𝑖
𝑛𝑖−1

]

∑︁
ℓ∈[𝑛𝑖−1

𝑛𝑖
]
𝐼 (𝑀𝑖−1 : 𝑌

𝑥 ℓ
𝑗

𝑖−1
| 𝑋𝑖−1 = 𝑥𝑖−1)

≤ 1

|X(𝑥𝑖−1) |
∑︁

𝑗 ∈[|X(𝑥𝑖−1) | 𝑛𝑖
𝑛𝑖−1

]

∑︁
ℓ∈[𝑛𝑖−1

𝑛𝑖
]
𝐼 (𝑀𝑖−1 : 𝑌

𝑥 ℓ
𝑗

𝑖−1
| 𝑌

𝑥1

𝑗

𝑖−1
. . .

. . . 𝑌
𝑥 ℓ−1

𝑗

𝑖−1
, 𝑋𝑖−1 = 𝑥𝑖−1)

=
1

|X(𝑥𝑖−1) |
∑︁

𝑗 ∈[|X(𝑥𝑖−1) | 𝑛𝑖
𝑛𝑖−1

]
𝐼 (𝑀𝑖−1 : 𝑌𝑖−1 | 𝑋𝑖−1 = 𝑥𝑖−1)

=
𝑛𝑖

𝑛𝑖−1

𝐼 (𝑀𝑖−1 : 𝑌𝑖−1 | 𝑋𝑖−1 = 𝑥𝑖−1) , (7)

wherewe used Lemma 4.2 to obtain the first inequality and the chain

rule for mutual information for the subsequent equality. Combining

Inequalities 6 and 7, we obtain:

𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖𝑋𝑖−1)

≤ E
𝑥𝑖−1←𝑋𝑖−1

𝑛𝑖

𝑛𝑖−1

𝐼 (𝑀𝑖−1 : 𝑌𝑖−1 | 𝑋𝑖−1 = 𝑥𝑖−1)

=
𝑛𝑖

𝑛𝑖−1

𝐼 (𝑀𝑖−1 : 𝑌𝑖−1 | 𝑋𝑖−1) ≤
𝑛𝑖

𝑛𝑖−1

𝐻 (𝑀𝑖−1) ≤
𝑛𝑖

𝑛𝑖−1

|𝑀𝑖−1 | .

□

The next lemma shows that the last party’s knowledge about

the crucial bits 𝑌
𝑋2

1
, 𝑌

𝑋3

2
, . . . , 𝑌

𝑋𝑝

𝑝−1
is limited.

Lemma 4.6. The following holds: (recall that 𝑠 = max𝑖 |𝑀𝑖 |)

𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑌
𝑋2

1
𝑌
𝑋3

2
. . . 𝑌

𝑋𝑝

𝑝−1
) ≤ 𝑠 (𝑝 − 1)

𝑛
1

𝑝−1

.

Proof. Let 3 ≤ 𝑖 ≤ 𝑝 be an integer. Then:

𝐼 (𝑀𝑖−1𝑋𝑖𝑌𝑖 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖

𝑖−1
)

= 𝐼 (𝑋𝑖𝑌𝑖 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖

𝑖−1
) + 𝐼 (𝑀𝑖−1 : 𝑌

𝑋2

1
. . . 𝑌

𝑋𝑖

𝑖−1
| 𝑋𝑖𝑌𝑖)

= 0 + 𝐼 (𝑀𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖

𝑖−1
| 𝑋𝑖) , (8)

where we first applied the chain rule, then used that the respec-

tive random variables are independent, and finally eliminated the

conditioning on 𝑌𝑖 , which can be done since all other variables are

independent with 𝑌𝑖 (see Rule 5 in Section 4.2). Next, we apply the

chain rule again, invoke Lemma 4.5, and remove variables from the

conditioning as they are independent with all other variables:

𝐼 (𝑀𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖

𝑖−1
| 𝑋𝑖)

= 𝐼 (𝑀𝑖−1 : 𝑌
𝑋𝑖

𝑖−1
| 𝑋𝑖) + 𝐼 (𝑀𝑖−1 : 𝑌

𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑋𝑖𝑌𝑋𝑖

𝑖−1
)

≤ |𝑀𝑖−1 |
𝑛𝑝

𝑛𝑝−1

+ 𝐼 (𝑀𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑌𝑋𝑖

𝑖−1
) .

Next, we bound the term 𝐼 (𝑀𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑌𝑋𝑖

𝑖−1
) by us-

ing the data processing inequality, the chain rule, and remove an

Conference’17, July 2017, Washington, DC, USA Christian Konrad

independent variable from the conditioning:

𝐼 (𝑀𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑌𝑋𝑖

𝑖−1
)

≤ 𝐼 (𝑀𝑖−2𝑋𝑖−1𝑌𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑌𝑋𝑖

𝑖−1
)

= 𝐼 (𝑋𝑖−1𝑌𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑌𝑋𝑖

𝑖−1
)

+ 𝐼 (𝑀𝑖−2 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑋𝑖−1𝑌𝑖−1𝑌

𝑋𝑖

𝑖−1
)

= 0 + 𝐼 (𝑀𝑖−2 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑋𝑖−1) .

We have thus shown:

𝐼 (𝑀𝑖−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖

𝑖−1
| 𝑋𝑖)

≤ |𝑀𝑖−1 |
𝑛𝑖

𝑛𝑖−1

+ 𝐼 (𝑀𝑖−2 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑖−1

𝑖−2
| 𝑋𝑖−1) . (9)

Using a simpler version of the same reasoning, we can show that:

𝐼 (𝑀1 : 𝑌
𝑋2

1
| 𝑋2) ≤ |𝑀1 |

𝑛2

𝑛1

. (10)

Using Equality 8 and Inequalities 9 and 10, we obtain:

𝐼 (𝑀𝑝−1 : 𝑌
𝑋2

1
. . . 𝑌

𝑋𝑝

𝑝−1
𝑋𝑝𝑌𝑝)

≤ 𝑠

(
𝑛𝑝

𝑛𝑝−1

+
𝑛𝑝−1

𝑛𝑝−2

+ · · · + 𝑛2

𝑛1

)
=
(𝑝 − 1)𝑠

𝑛
1

𝑝−1

.

□

Finally we are ready to prove the main result of this section.

Theorem 4.7. For every 𝜖 < 0.005, the randomized one-way

communication complexity of Bit-Vector Learning(𝑝, 𝑛, 𝑘) is bounded
as follows:

𝑅→𝜖 (Bit-Vector Learning(𝑝, 𝑛, 𝑘)) ≥
(0.005𝑘 − 1)𝑛

1

𝑝−1

𝑝 − 1

= Ω(𝑘𝑛
1

𝑝−1

𝑝
) .

Proof. Let 𝑞 be the largest integer 𝑖 such that 𝑌 𝐼
𝑖
≠ 𝜖 . Recall

that by Lemma 4.3 we have 𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑍 𝐼) ≥ (1 − 𝜖)1.01𝑘 − 1.

However, we also obtain:

𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑍 𝐼) = 𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑌 𝐼
1
𝑌 𝐼

2
. . . 𝑌 𝐼

𝑞)

= 𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑌 𝐼
1
𝑌 𝐼

2
. . . 𝑌 𝐼

𝑞−1
)

+ 𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑌 𝐼
𝑞 | 𝑌 𝐼

1
𝑌 𝐼

2
. . . 𝑌 𝐼

𝑞−1
)

≤ 𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑌 𝐼
1
𝑌 𝐼

2
. . . 𝑌 𝐼

𝑞−1
) + 𝐻 (𝑌 𝐼

𝑞)

≤ 𝐼 (𝑀𝑝−1𝑋𝑝𝑌𝑝 : 𝑌
𝑋2

1
𝑌
𝑋3

2
. . . 𝑌

𝑋𝑝

𝑝−1
) + 𝑘

≤ (𝑝 − 1)𝑠

𝑛
1

𝑝−1

+ 𝑘 ,

where we first applied the chain rule for mutual information, then

observed that the variables 𝑌 𝐼
1
𝑌 𝐼

2
. . . 𝑌 𝐼

𝑞−1
are contained in the vari-

ables 𝑌𝑋 2

1
𝑌𝑋 3

2
. . . 𝑌

𝑋𝑝

𝑝−1
, and then invoked Lemma 4.6. This is thus

only possible if:

(1 − 𝜖)1.01𝑘 − 1 ≤ (𝑝 − 1)𝑠

𝑛
1

𝑝−1

+ 𝑘 ,

which, using 𝜖 < 0.005, implies

(0.005𝑘 − 1)𝑛
1

𝑝−1

𝑝 − 1

≤ 𝑠 .

Since we considered an arbitrary protocol Π, the result follows. □

4.5 Reduction: FEwW to Bit-Vector Learning
In this subsection, we show that a streaming algorithm for FEwW

can be used to obtain a communication protocol for Bit-Vector

Learning. The lower bound on the communication complexity of

Bit-Vector Learning thus yields a lower bound on the space require-

ments of any algorithm for FEwW.

Theorem 4.8. Let A be an 𝛼-approximation streaming algorithm

for FEwW with error probability at most 0.005 and 𝛼 =
𝑝

1.01
, for some

integer 𝑝 ≥ 2. Then A uses space at least:

Ω(𝑑𝑛
1

𝑝−1

𝛼2
) .

Proof. Given their inputs for Bit-Vector Learning(𝑝, 𝑛, 𝑘), the
𝑝 parties construct a graph

𝐺 = ([𝑛], [2𝑘𝑝],∪𝑝
𝑖=1

𝐸𝑖)
so that party 𝑖 holds edges 𝐸𝑖 . The edges of party 𝑖 ∈ [𝑝] are as
follows:

𝐸𝑖 = {(ℓ, 2𝑘 · (𝑖 − 1) + 2 · (𝑗 − 1) +𝑌 ℓ
𝑖 [𝑗] + 1) : ℓ ∈ 𝑋𝑖 and 𝑗 ∈ [𝑘]} .

An illustration of this construction is given in Figure 2 (the example

uses the notation 𝐵𝑖 = {2𝑘 (𝑝−1)+1, . . . , 2𝑘𝑝}). Observe that Δ = 𝑘𝑝

(the vertex in 𝑋𝑝 has such a degree).

LetA be an𝛼-approximation streaming algorithm for FEwW(𝑛,𝑑)
with 𝛼 =

𝑝
1.01

and 𝑑 = Δ = 𝑘𝑝 . Party 1 simulates algorithm A on

their edges 𝐸1 and sends the resulting memory state to party 2.

This continues until party 𝑝 completes the algorithm and outputs

a neighbourhood (𝐼 , 𝑆). We observe that every neighbour 𝑠 ∈ 𝑆

of vertex 𝐼 allows us to determine one bit of string 𝑍 𝐼
. Since the

approximation factor of A is
𝑝

1.01
, we have |𝑆 | ≥ 1.01·Δ

𝑝 = 1.01𝑘 . We

can thus predict 1.01𝑘 bits of string 𝑍 𝐼
. By Theorem 4.7, every such

protocol requires a message of length

Ω(𝑘𝑛
1

𝑝−1

𝑝
) = Ω(𝑑𝑛

1

𝑝−1

𝛼2
) ,

which implies the same space lower bound for A. □

5 UPPER BOUND FOR INSERTION-DELETION
STREAMS

In this section, we discuss our streaming algorithm for FEwW for

insertion-deletion streams.

Our algorithm is based on the combination of two sampling

strategies which both rely on the very common 𝑙0-sampling tech-

nique: An 𝑙0-sampler in insertion-deletion streams outputs a uni-

form random element from the non-zero coordinates of the vector

described by the input stream. In our setting, the input vector is of

dimension 𝑛 ·𝑚 where each coordinate indicates the presence or

absence of an edge. Jowhari et al. showed that there is an 𝑙0-sampler

that uses space𝑂 (log
2 (𝑑𝑖𝑚) log

1

𝛿
), where 𝑑𝑖𝑚 is the dimension of

the input vector, and succeeds with probability 1 − 𝛿 [26].

Frequent Elements with Witnesses in Data Streams Conference’17, July 2017, Washington, DC, USA

Alice

𝐵1

𝑎1 𝑎2 𝑎3 𝑎4

1 0 1 0 1 0 1 0 1 0

Bob

𝐵2

𝑎1 𝑎2 𝑎3 𝑎4

1 0 1 0 1 0 1 0 1 0

Charlie

𝐵3

𝑎1 𝑎2 𝑎3 𝑎4

1 0 1 0 1 0 1 0 1 0

Figure 2: In the example instance given in Figure 1, Alice holds 𝑌 1

1
= 10010, 𝑌 2

1
= 01000, 𝑌 3

1
= 01011, and 𝑌 4

1
= 01111. For each

string 𝑌 𝑗

1
, Alice connects vertex 𝑎 𝑗 to 5 vertices, each indicating one bit of the respective bit string. For example, when reading

the labels of the 𝐵1-vertices connected to 𝑎4 from left-to-right, we obtain the bit sequence 01111 which equals 𝑌 4

1
.

In the following, we will run Õ(𝑛𝑑) 𝑙0-samplers. To ensure that

they succeed with large enough probability, we will run those sam-

plerswith𝛿 = 1

𝑛10𝑑
which yields a space requirement of𝑂 (log

2 (𝑛𝑚)·
log(𝑛𝑑)) for each sampler.

𝑙0-sampling allows us to, for example, sample uniformly at ran-

dom from all edges of the input graph or from all edges incident to

a specific vertex.

Our algorithm is as follows:

(1) Let 𝑥 = max{ 𝑛𝛼 ,
√
𝑛}

(2) Vertex Sampling: Before processing the stream, sample

a uniform random subset𝐴′ ⊆ 𝐴 of size 10𝑥 ln𝑛. For each

sampled vertex 𝑎, run 10
𝑑
𝛼 ln𝑛 𝑙0-samplers on the set of

edges incident to 𝑎. This strategy requires space Õ(𝑥𝑑𝛼).

(3) Edge Sampling: Run 10
𝑛𝑑
𝛼

(
1

𝑥 +
1

𝛼

)
ln(𝑛𝑚) 𝑙0-samplers

on the stream, each producing a uniform random edge.

This strategy requires space Õ

(
𝑛𝑑
𝛼

(
1

𝑥 +
1

𝛼

))
.

(4) Output any neighbourhood of size at least
𝑑
𝛼 among the

stored edges if there is one, otherwise report fail

Algorithm 3: One-pass streaming algorithm for

insertion-deletion streams

The analysis of our algorithm relies on the following lemma,

whose proof uses standard concentration bounds and is deferred to

the appendix.

Lemma 5.1. Let 𝑦, 𝑘, 𝑛 be integers with 𝑦 ≤ 𝑘 ≤ 𝑛. Let U be a

universe of size 𝑛 and let 𝑋 ⊆ U be a subset of size 𝑘 . Further, let

𝑌 be the subset of U obtained by sampling 𝐶 ln(𝑛) 𝑛𝑦
𝑘

times from

U uniformly at random (with repetition), for some 𝐶 ≥ 4. Then,

|𝑌 ∩ 𝑋 | ≥ 𝑦 with probability 1 − 1

𝑛𝐶−3
.

We will first show that if the input graph contains enough ver-

tices of degree at least
𝑑
𝛼 , then the vertex sampling strategy suc-

ceeds.

Lemma 5.2. The vertex sampling strategy succeeds with high prob-

ability if there are at least
𝑛
𝑥 vertices of degree at least

𝑑
𝛼 .

Proof. First, we show that 𝐴′ contains a vertex of degree at

least
𝑑
𝛼 with high probability. Indeed, the probability that no node

of degree at least
𝑑
𝛼 is contained in the sample 𝐴′ is at most:(𝑛−𝑛

𝑥

10𝑥 ln𝑛

)(𝑛
10𝑥 ln𝑛

) =
(𝑛 − 𝑛

𝑥)! · (𝑛 − 10𝑥 ln𝑛)!
𝑛! · (𝑛 − 𝑛

𝑥 − 10𝑥 ln𝑛)! ≤
(
𝑛 − 10𝑥 ln𝑛

𝑛

) 𝑛
𝑥

≤ exp

(
−10𝑥 ln𝑛

𝑛
· 𝑛
𝑥

)
= 𝑛−10 .

Next, suppose that there is a node 𝑎 ∈ 𝐴′ with deg(𝑎) ≥ 𝑑
𝛼 . Then,

by Lemma 5.1 sampling 10 · 𝑑𝛼 log𝑛 times uniformly at random from

the set of edges incident to 𝑎 results in at least
𝑑
𝛼 different edges

with probability at least 1 − 𝑛−7
. □

Next, we will show that if the vertex sampling strategy fails, then

the edge sampling strategy succeeds.

Lemma 5.3. The edge sampling strategy succeeds with high proba-

bility if there are at most
𝑛
𝑥 vertices of degree at least

𝑑
𝛼 .

Proof. Let Δ be the largest degree of an 𝐴-vertex. Since there

are at most
𝑛
𝑥 𝐴-vertices of degree at least 𝑑

𝛼 , the input graph has

at most |𝐸 | ≤ 𝑛
𝑥 · Δ + 𝑛 ·

𝑑
𝛼 edges. Fix now a node 𝑎 of degree Δ.

Then, by Lemma 5.1, we will sample
𝑑
𝛼 different edges incident to

𝑎 with high probability, if we sample

10 ·
|𝐸 | 𝑑𝛼
Δ

ln(|𝐸 |) ≤ 10 ·
(
𝑛𝑑

𝑥𝛼
+ 𝑛𝑑2

𝛼2Δ

)
ln(|𝐸 |)

≤ 10 · 𝑛𝑑
𝛼

(
1

𝑥
+ 1

𝛼

)
ln(𝑛 ·𝑚)

times, which matches the number of samples we take in our algo-

rithm. □

We obtain the following theorem:

Theorem 5.4. Algorithm 3 is a one-pass 𝛼-approximation stream-

ing for insertion-deletion streams that uses space Õ(𝑑𝑛
𝛼2
) if 𝛼 ≤

√
𝑛,

and space Õ(
√
𝑛𝑑
𝛼) if 𝛼 >

√
𝑛, and succeeds with high probability.

Proof. Correctness of the algorithm follows from Lemmas 5.2

and 5.3. Concerning the space requirements, the algorithm uses

space Õ(𝑥𝑑𝛼) + Õ(𝑛𝑑𝛼 (
1

𝑥 +
1

𝛼)), which simplifies to the bounds

claimed in the statement of the theorem by choosing𝑥 = max{ 𝑛𝛼 ,
√
𝑛}.
□

Using the same ideas as in the proof of Corollary 3.4, we obtain:

Conference’17, July 2017, Washington, DC, USA Christian Konrad

Corollary 5.5. There is a O(
√
𝑛)-approximation semi-streaming

algorithm for insertion-deletion streams for Star Detection that suc-

ceeds with high probability.

6 LOWER BOUND FOR
INSERTION-DELETION STREAMS

We will give now our lower bound for FEwW in insertion-deletion

streams. To this end, we first define the two-party communica-

tion problem Augmented-Matrix-Row-Index and prove a lower

bound on its communication complexity. Finally, we argue that

an insertion-deletion streaming algorithm for FEwW can be used

to solve Augmented-Matrix-Row-Index, which yields the desired

lower bound.

6.1 The Augmented-Matrix-Row-Index
Problem

Before defining the problem of interest, we require additional nota-

tion. Let𝑀 be an 𝑛-by-𝑚 matrix. Then the 𝑖th row of𝑀 is denoted

by 𝑀𝑖 . A position (𝑖, 𝑗) is a tuple chosen from [𝑛] × [𝑚]. We will

index the matrix 𝑀 by a set of positions 𝑆 , i.e., 𝑀𝑆 , meaning the

matrix positions𝑀𝑖, 𝑗 , for every (𝑖, 𝑗) ∈ 𝑆 .
The problem Augmented-Matrix-Row-Index(𝑛,𝑚, 𝑘) is defined

as follows:

Problem 5 (Augmented-Matrix-Row-Index(𝑛,𝑚, 𝑘)). In the prob-
lem Augmented-Matrix-Row-Index, Alice holds a binary matrix 𝑋 ∈
{0, 1}𝑛×𝑚 where every 𝑋𝑖 𝑗 is a uniform random Bernoulli variable,

for some integers 𝑛,𝑚. Bob holds a uniform random index 𝐽 ∈ [𝑛]
and for each 𝑖 ≠ 𝐽 , Bob holds a uniform random subset of positions

𝑌𝑖 ⊆ {𝑖} × [𝑚] with |𝑌𝑖 | =𝑚 − 𝑘 and also knows 𝑋𝑌𝑖 . Alice sends a

message to Bob who then outputs the entire row 𝑋 𝐽 .

For ease of notation, we define 𝑌𝐼 = ⊥ and 𝑌 = 𝑌1, 𝑌2, . . . , 𝑌𝑛 . An

example instance of Augmented-Matrix-Row-Index(4, 6, 2) is given
in Figure 3.

0 1 1 1 0 0

1 1 0 0 1 0

0 0 0 0 1 0

1 0 1 0 1 0

©­­­­­«
ª®®®®®¬

0 1 1 0

1 1 0 1

0 0

0 1 0 0

©­­­­­«
ª®®®®®¬

Alice Bob𝑀

Figure 3: Example Instance of Augmented-Matrix-Row-
Index(4, 6, 2). Bob needs to output the content of row 3. Bob
knows 6 − 2 = 4 random positions in every row except row 3.

6.2 Lower Bound Proof for
Augmented-Matrix-Row-Index

We now prove a lower bound on the one-way communication

complexity of Augmented-Matrix-Row-Index(𝑛,𝑚, 𝑘). To this end,

let Π be a deterministic communication protocol for Augmented-

Matrix-Row-Index(𝑛,𝑚, 𝑘) with distributional error at most 𝜖 > 0

and denote by𝑀 the message that Alice sends to Bob.

First, we prove that the mutual information between row 𝑋 𝐽 and

Bob’s knowledge, that is 𝑀𝐽𝑌𝑋𝑌 , is large. Since the proof of the

next lemma is almost identical to Lemma 4.3 we postpone it to the

appendix:

Lemma 6.1. We have:

𝐼 (𝑋 𝐽 : 𝑀𝐽𝑌𝑋𝑌) ≥ (1 − 𝜖)𝑚 − 1 .

Next, we prove our communication lower bound for Augmented-

Matrix-Row-Index:

Theorem 6.2. We have:

𝑅→𝜖 (Augmented-Matrix-Row-Index(𝑛,𝑚, 𝑘)) ≥ (𝑛−1) (𝑘 −1−𝜖𝑚) .

Proof. Our goal is to bound the term 𝐼 (𝑋 : 𝑀) from below. To

this end, we partition the matrix𝑀 as follows: Let 𝑍 be all positions

that are different to row 𝐽 and the positions known to Bob, i.e., the

set 𝑌 . Then:

𝐼 (𝑋 : 𝑀) = 𝐼 (𝑋𝑌𝑋 𝐽𝑋𝑍 : 𝑀)
= 𝐼 (𝑋𝑌𝑋 𝐽 : 𝑀) + 𝐼 (𝑋𝑍 : 𝑀 | 𝑋 𝐽𝑋𝑌)
≥ 𝐼 (𝑋𝑍 : 𝑀 | 𝑋 𝐽𝑋𝑌) ,

where we applied the chain rule for mutual information. For 𝑖 ≠ 𝐽 ,

let 𝑍𝑖 = ({𝑖} × [𝑚]) \ 𝑌𝑖 , i.e., the positions of row 𝑖 unknown to

Bob, and let 𝑍 𝐽 = ∅. Furthermore, let 𝐿 be a random variable that

is uniformly distributed in [𝑛] \ 𝐽 . Consider now a fixed index 𝑗 .

Then, using the chain rule for mutual information and the fact that

𝑋𝑍𝑖
and 𝑋𝑍𝑞

are independent, for every 𝑖 ≠ 𝑞, we obtain:

𝐼 (𝑋𝑍 : 𝑀 | 𝑋 𝑗𝑋𝑌 , 𝐽 = 𝑗) ≥
∑︁

𝑖∈[𝑛]\{ 𝑗 }
𝐼 (𝑋𝑍𝑖

: 𝑀 | 𝑋 𝑗𝑋𝑌 , 𝐽 = 𝑗) ,

= (𝑛 − 1) · 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋 𝐽𝑋𝑌𝐿, 𝐽 = 𝑗) .

By combining all potential values for 𝑗 , we obtain:

𝐼 (𝑋𝑍 : 𝑀 | 𝑋 𝐽𝑋𝑌) ≥ (𝑛 − 1) · 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋 𝐽𝑋𝑌𝐿) .

In the following, we will show that 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋 𝐽𝑋𝑌𝐿) ≥

𝑘 − 1− 𝜖𝑚, which then completes the theorem. To this end, we will

relate the previous expression to the statement in Lemma 6.1, as

follows: First, let 𝑌 ′
𝐽
be𝑚 − 𝑘 uniform random positions in row 𝐽 .

Then by independence, we obtain

𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋 𝐽𝑋𝑌𝐿) ≥ 𝐼 (𝑋𝑍𝐿

: 𝑀 | 𝑋𝑌 ′
𝐽
𝑋𝑌𝐿) .

Next, denote by 𝑌 \𝑌𝐿 := 𝑌1, . . . , 𝑌𝐿−1, 𝑌𝐿+1, . . . , 𝑌𝑛 . Then, by using

the chain rule again, we obtain:

𝐼 (𝑋𝐿 : 𝑀 | 𝑋𝑌 ′
𝐽
𝑋𝑌\𝑌𝐿𝐿) = 𝐼 (𝑋𝑌𝐿𝑋𝑍𝐿

: 𝑀 | 𝑋𝑌 ′
𝐽
𝑋𝑌\𝑌𝐿𝐿)

= 𝐼 (𝑋𝑌𝐿 : 𝑀 | 𝑋𝑌 ′
𝐽
𝑋𝑌\𝑌𝐿𝐿)

+ 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋𝑌 ′

𝐽
𝑋𝑌𝐿)

≤ 𝐻 (𝑋𝑌𝐿) + 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋𝑌 ′

𝐽
𝑋𝑌𝐿)

≤ (𝑚 − 𝑘) + 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋𝑌 ′

𝐽
𝑋𝑌𝐿) .

Last, it remains to argue that 𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋𝑌 ′

𝐽
𝑋𝑌\𝑌𝐿𝐿) is equiva-

lent to 𝐼 (𝑋𝑍 𝐽
: 𝑀 | 𝐽𝑌𝑋𝑌). Indeed, first observe that 𝐿 is chosen

uniformly at random from [𝑛] \ 𝐽 , which is equivalent to a value

chosen uniformly at random from [𝑛] since 𝐽 is itself a uniform

random value in [𝑛]. Observe further that the conditioning is also
equivalent: both 𝑋𝑌 ′

𝐽
𝑋𝑌\𝑌𝐿 and 𝑋𝑌 reveal𝑚 − 𝑘 uniform random

Frequent Elements with Witnesses in Data Streams Conference’17, July 2017, Washington, DC, USA

positions of each row different to row 𝐿 and 𝐽 , respectively. Hence,

using Lemma 6.1 we obtain:

𝐼 (𝑋𝑍𝐿
: 𝑀 | 𝑋𝑌 ′

𝐽
𝑋𝑌𝐿) ≥ 𝐼 (𝑋𝐿 : 𝑀 | 𝑋𝑌 ′

𝐽
𝑋𝑌\𝑌𝐿𝐿) − (𝑚 − 𝑘)

≥ (1 − 𝜖)𝑚 − 1 − (𝑚 − 𝑘) = 𝑘 − 1 − 𝜖𝑚 .

We have thus shown that 𝐼 (𝑋 : 𝑀) ≥ (𝑛 − 1) (𝑘 − 1 − 𝜖𝑚). The
result then follows, since 𝐼 (𝑋 : 𝑀) ≤ 𝐻 (𝑀) ≤ |𝑀 |. □

6.3 Reduction: FEwW to
Augmented-Matrix-Row-Index

Lemma 6.3. LetA be an𝛼-approximation insertion-deletion stream-

ing algorithm for FEwW(𝑛,𝑑) with space 𝑠 that fails with probabil-

ity at most 𝛿 . Then there is a one-way communication protocol for

Augmented-Matrix-Row-Index(𝑛, 2𝑑, 𝑑𝛼 − 1) with message size

𝑂 (𝑠 · 𝛼 · log𝑛)

that fails with probability at most 𝛿 + 𝑛−10
.

Proof. We will show how algorithm A can be used to solve

Augmented-Matrix-Row-Index(𝑛, 2𝑑, 𝑑𝛼 − 1). Assume from now on

that the number of 1s in row 𝐽 of matrix 𝑋 is at least 𝑑 . We will

argue later what to do if this is not the case. Alice and Bob repeat

the following protocol Θ(𝛼 log𝑛) times in parallel:

First, Alice and Bob use public randomness to chose 𝑛 permu-

tations 𝜋𝑖 : [2𝑑] → [2𝑑] at random and permute the elements of

each row 𝑖 independently using 𝜋𝑖 . Observe that this operation does

not change the number of 1s in each row. Let 𝑋 ′ be the permuted

matrix. Then, Alice and Bob interpret the matrix 𝑋 ′ as the adja-
cency matrix of a bipartite graph, where Bob’s knowledge about

𝑋 ′ is treated as edge deletions. Under the assumption that row 𝐽

contains at least 𝑑 1s, and since none of the elements of row 𝐽 are

deleted by Bob’s input, we have a valid instance for FEwW(𝑛,𝑑).
Alice then runs A on the graph obtained from 𝑋 ′ and sends the

resulting memory state to Bob. Bob then continues A on his input

and outputs a neighbourhood of size at least
𝑑
𝛼 . Observe that after

Bob’s deletions, every row except row 𝐽 contains at most
𝑑
𝛼 − 1 1s,

which implies that A reports a neighbourhood rooted at 𝐴-vertex

𝐽 (the vertex that corresponds to row 𝐽). Bob thus learns at least 𝑑
𝛼

positions of row 𝐽 where the matrix𝑋 ′ is 1. Bob then applies (𝜋 𝐽)−1

and thus learns at least
𝑑
𝛼 positions of row 𝐽 of matrix 𝑋 where

the value is 1. Observe that since the permutation 𝜋 𝐽 was chosen

uniformly at random, the probability that a specific position with

value 1 in row 𝐽 of matrix 𝑋 is learnt by the algorithm is at least

𝑑/𝛼
2𝑑

= 1

2𝛼 . Applying concentration bounds, since the protocol is

repeatedΘ(𝛼 · log𝑛) times (whereΘ hides a large enough constant),

we learn all 1s in row 𝐽 with probability 1 − 𝑛−10
and thus have

solved Augmented-Matrix-Row-Index(𝑛, 2𝑑, 𝑑𝛼 − 1).
It remains to address the case when row 𝐽 contains fewer than

𝑑 1s. To address this case, Alice and Bob simultaneously run the

algorithm mentioned above on the matrix obtained by inverting

every bit, which allows them to learn all positions in row 𝐽 where

the matrix 𝑋 is 0. Finally, Bob can easily decide in which of the two

cases they are: If row 𝐽 contained at most 𝑑 − 1 1s then the strategy

without inverting the input would therefore report at most 𝑑 − 1

1s. □

Theorem 6.4. Every 𝛼-approximation insertion-deletion stream-

ing algorithm for FEwW(𝑛,𝑑) that fails with probability 𝛿 ≤ 1

2𝑑

requires space Ω
(

𝑛𝑑
𝛼2

log𝑛
)
)
.

Proof. Let A be a streaming algorithm as in the description of

this theorem. Then, by Lemma 6.3, there is a one-way communica-

tion protocol for Augmented-Matrix-Row-Index(𝑛, 2𝑑, 𝑑𝛼 − 1) that
succeeds with probability 𝛿 +𝑛−10

and communicates O(𝑠 · 𝛼 log𝑛)
bits. Then, by Theorem 6.2, we have:

𝑠 · 𝛼 log𝑛 = Ω

(
(𝑛 − 1) (𝑑

𝛼
− 2 − (𝛿 + 𝑛−10)2𝑑

)
= Ω

(
𝑛𝑑

𝛼

)
,

which implies

𝑠 = Ω

(
𝑛𝑑

𝛼2
log𝑛

)
.

□

REFERENCES
[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing Graph

Structure via Linear Measurements. In Proceedings of the Twenty-third Annual

ACM-SIAM Symposium on Discrete Algorithms (Kyoto, Japan) (SODA ’12). Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 459–467. http:

//dl.acm.org/citation.cfm?id=2095116.2095156

[2] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for (Δ +

1) Vertex Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium

on Discrete Algorithms (San Diego, California) (SODA ’19). Society for Industrial

and Applied Mathematics, USA, 767–786.

[3] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2016. Tight bounds for single-pass

streaming complexity of the set cover problem. In Proceedings of the 48th Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,

USA, June 18-21, 2016. 698–711. https://doi.org/10.1145/2897518.2897576

[4] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-

mum Matchings in Dynamic Graph Streams and the Simultaneous Communica-

tion Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 1345–

1364. https://doi.org/10.1137/1.9781611974331.ch93

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2002. An In-

formation Statistics Approach to Data Stream and Communication Complex-

ity. In Proceedings of the 43rd Symposium on Foundations of Computer Science

(FOCS ’02). IEEE Computer Society, Washington, DC, USA, 209–218. http:

//dl.acm.org/citation.cfm?id=645413.652164

[6] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. 2002. Information

theory methods in communication complexity. In Proceedings 17th IEEE Annual

Conference on Computational Complexity. 93–102. https://doi.org/10.1109/CCC.

2002.1004344

[7] Zsolt Baranyai. 1979. The edge-coloring of complete hypergraphs I. Journal of

Combinatorial Theory, Series B 26, 3 (1979), 276 – 294. https://doi.org/10.1016/

0095-8956(79)90002-9

[8] Radu Berinde, Graham Cormode, Piotr Indyk, and Martin J. Strauss. 2009. Space-

optimal Heavy Hitters with Strong Error Bounds. In Proceedings of the Twenty-

eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-

tems (Providence, Rhode Island, USA) (PODS ’09). ACM, New York, NY, USA,

157–166. https://doi.org/10.1145/1559795.1559819

[9] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. 2010. Space-

optimal heavy hitters with strong error bounds. ACM Trans. Database Syst. 35, 4

(2010), 26:1–26:28. https://doi.org/10.1145/1862919.1862923

[10] Arnab Bhattacharyya, Palash Dey, and David P. Woodruff. 2018. An Optimal

Algorithm for &Ell;1-Heavy Hitters in Insertion Streams and Related Problems.

ACM Trans. Algorithms 15, 1, Article 2 (Oct. 2018), 27 pages. https://doi.org/10.

1145/3264427

[11] Yousra Chabchoub, Christine Fricker, and Hanene Mohamed. 2009. Analysis

of a Bloom Filter algorithm via the supermarket model. In 21st International

Teletraffic Congress, ITC 2009, Paris, France, September 15-17, 2009. 1–8. http:

//ieeexplore.ieee.org/document/5300252/

[12] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. 2003. Near-Optimal Lower

Bounds on the Multi-Party Communication Complexity of Set Disjointness. In

18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10

July 2003, Aarhus, Denmark. 107–117. https://doi.org/10.1109/CCC.2003.1214414

[13] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. 2001.

Informational Complexity and the Direct Sum Problem for Simultaneous Message

Complexity. In 42nd Annual Symposium on Foundations of Computer Science, FOCS

http://dl.acm.org/citation.cfm?id=2095116.2095156
http://dl.acm.org/citation.cfm?id=2095116.2095156
https://doi.org/10.1145/2897518.2897576
https://doi.org/10.1137/1.9781611974331.ch93
http://dl.acm.org/citation.cfm?id=645413.652164
http://dl.acm.org/citation.cfm?id=645413.652164
https://doi.org/10.1109/CCC.2002.1004344
https://doi.org/10.1109/CCC.2002.1004344
https://doi.org/10.1016/0095-8956(79)90002-9
https://doi.org/10.1016/0095-8956(79)90002-9
https://doi.org/10.1145/1559795.1559819
https://doi.org/10.1145/1862919.1862923
https://doi.org/10.1145/3264427
https://doi.org/10.1145/3264427
http://ieeexplore.ieee.org/document/5300252/
http://ieeexplore.ieee.org/document/5300252/
https://doi.org/10.1109/CCC.2003.1214414

Conference’17, July 2017, Washington, DC, USA Christian Konrad

2001, 14-17 October 2001, Las Vegas, Nevada, USA. 270–278. https://doi.org/10.

1109/SFCS.2001.959901

[14] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent

Items in Data Streams. In Proceedings of the 29th International Colloquium on

Automata, Languages and Programming (ICALP ’02). Springer-Verlag, Berlin,

Heidelberg, 693–703. http://dl.acm.org/citation.cfm?id=646255.684566

[15] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent

items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3–15. https://doi.org/10.

1016/S0304-3975(03)00400-6

[16] Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent Sets in

Vertex-Arrival Streams. In 46th International Colloquium on Automata, Languages,

and Programming (ICALP 2019) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and

Stefano Leonardi (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 45:1–45:14. https://doi.org/10.4230/LIPIcs.ICALP.2019.45

[17] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream

Summary: The Count-min Sketch and Its Applications. J. Algorithms 55, 1 (April

2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.12.001

[18] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory

(Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience,

New York, NY, USA.

[19] Jacques Dark and Christian Konrad. 2020. Optimal Lower Bounds for Matching

and Vertex Cover in Dynamic Graph Streams. In 35th Computational Complexity

Conference, CCC 2020 (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[20] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. 2002. Frequency

Estimation of Internet Packet Streams with Limited Space. In Proceedings of

the 10th Annual European Symposium on Algorithms (ESA ’02). Springer-Verlag,

Berlin, Heidelberg, 348–360.

[21] Cristian Estan and George Varghese. 2003. New Directions in Traffic Measure-

ment and Accounting: Focusing on the Elephants, Ignoring the Mice. ACM Trans.

Comput. Syst. 21, 3 (Aug. 2003), 270–313. https://doi.org/10.1145/859716.859719

[22] Shir Landau Feibish, Yehuda Afek, Anat Bremler-Barr, Edith Cohen, and Michal

Shagam. 2017. Mitigating DNS random subdomain DDoS attacks by distinct

heavy hitters sketches. In Proceedings of the fifth ACM/IEEE Workshop on Hot

Topics in Web Systems and Technologies, HotWeb 2017, San Jose / Silicon Valley,

CA, USA, October 12 - 14, 2017. 8:1–8:6. https://doi.org/10.1145/3132465.3132474

[23] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. 2005. On graph problems in a semi-streaming model. Theoretical

Computer Science 348, 2 (2005), 207 – 216. https://doi.org/10.1016/j.tcs.2005.09.013

Automata, Languages and Programming: Algorithms and Complexity (ICALP-A

2004).

[24] Magnús M. Halldórsson, Xiaoming Sun, Mario Szegedy, and Chengu Wang. 2012.

Streaming and Communication Complexity of Clique Approximation. In Au-

tomata, Languages, and Programming, Artur Czumaj, Kurt Mehlhorn, Andrew

Pitts, and Roger Wattenhofer (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-

berg, 449–460.

[25] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. 1999. Ex-

ternal Memory Algorithms. American Mathematical Society, Boston, MA, USA,

Chapter Computing on Data Streams, 107–118. http://dl.acm.org/citation.cfm?

id=327766.327782

[26] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. 2011. Tight Bounds for Lp

Samplers, Finding Duplicates in Streams, and Related Problems. In Proceedings of

the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (Athens, Greece) (PODS ’11). ACM, New York, NY, USA, 49–58. https:

//doi.org/10.1145/1989284.1989289

[27] Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid

Nouri, Aaron Sidford, and Jakab Tardos. 2020. Fast and Space Efficient Spectral

Sparsification in Dynamic Streams. In Proceedings of the Thirty-First Annual

ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City, Utah) (SODA ’20).

Society for Industrial and Applied Mathematics, USA, 1814–1833.

[28] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. 2003. A Simple

Algorithm for Finding Frequent Elements in Streams and Bags. ACM Trans.

Database Syst. 28, 1 (2003), 51–55. https://doi.org/10.1145/762471.762473

[29] Christian Konrad. 2015. Maximum Matching in Turnstile Streams. In Algorithms

- ESA 2015, Nikhil Bansal and Irene Finocchi (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 840–852.

[30] Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum Match-

ing in Semi-streaming with Few Passes. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, Anupam Gupta, Klaus

Jansen, José Rolim, and Rocco Servedio (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 231–242.

[31] Abhishek Kumar and Jun (Jim) Xu. 2006. Sketch Guided Sampling - Using On-

Line Estimates of Flow Size for Adaptive Data Collection. In INFOCOM 2006. 25th

IEEE International Conference on Computer Communications, Joint Conference

of the IEEE Computer and Communications Societies, 23-29 April 2006, Barcelona,

Catalunya, Spain. https://doi.org/10.1109/INFOCOM.2006.326

[32] Eyal Kushilevitz and Noam Nisan. 2006. Communication Complexity. Cambridge

University Press, New York, NY, USA.

[33] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate Frequency

Counts over Data Streams. In Proceedings of the 28th International Conference

on Very Large Data Bases (Hong Kong, China) (VLDB ’02). VLDB Endowment,

346–357. http://dl.acm.org/citation.cfm?id=1287369.1287400

[34] Andrew McGregor. 2014. Graph Stream Algorithms: A Survey. SIGMOD Rec. 43,

1 (May 2014), 9–20. https://doi.org/10.1145/2627692.2627694

[35] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-

putation of Frequent and Top-k Elements in Data Streams. In Database Theory -

ICDT 2005, 10th International Conference, Edinburgh, UK, January 5-7, 2005, Pro-

ceedings (Lecture Notes in Computer Science, Vol. 3363), Thomas Eiter and Leonid

Libkin (Eds.). Springer, 398–412. https://doi.org/10.1007/978-3-540-30570-5_27

[36] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-

putation of Frequent and Top-k Elements in Data Streams. In Proceedings of the

10th International Conference on Database Theory (Edinburgh, UK) (ICDT’05).

Springer-Verlag, Berlin, Heidelberg, 398–412. https://doi.org/10.1007/978-3-540-

30570-5_27

[37] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Sci. Comput.

Program. 2, 2 (1982), 143–152. https://doi.org/10.1016/0167-6423(82)90012-0

[38] Jeffrey S. Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. Math.

Softw. 11, 1 (March 1985), 37–57. https://doi.org/10.1145/3147.3165

A SAMPLING LEMMA
Lemma 5.1. Let 𝑦, 𝑘, 𝑛 be integers with 𝑦 ≤ 𝑘 ≤ 𝑛. Let U be a

universe of size 𝑛 and let 𝑋 ⊆ U be a subset of size 𝑘 . Further, let

𝑌 be the subset of U obtained by sampling 𝐶 ln(𝑛) 𝑛𝑦
𝑘

times from

U uniformly at random (with repetition), for some 𝐶 ≥ 4. Then,

|𝑌 ∩ 𝑋 | ≥ 𝑦 with probability 1 − 1

𝑛𝐶−3
.

Proof. Let 𝑡𝑖 be the expected number of samples it takes to

sample an item from 𝑋 that has not been sampled previously, given

that 𝑖 − 1 items from 𝑋 have already been sampled. The probability

of sampling a new item given that 𝑖 − 1 items have already been

sampled is 𝑝𝑖 =
𝑘−(𝑖−1)

𝑛 , which implies that 𝑡𝑖 = 1

𝑝𝑖
= 𝑛

𝑘−(𝑖−1) .
Thus, the expected number 𝜇 of samples required to sample at least

𝑦 different items is therefore:

𝜇 :=

𝑦∑︁
𝑖=1

𝑡𝑖 =

𝑦∑︁
𝑖=1

𝑛

𝑘 − (𝑖 − 1) = 𝑛 · (𝐻𝑘 − 𝐻𝑘−𝑦) = 𝑛 · 𝐻 ,

where 𝐻𝑖 is the 𝑖-th Harmonic number and 𝐻 = 𝐻𝑘 − 𝐻𝑘−𝑦 . We

consider two cases:

Suppose first that 𝑦 ≥ 𝑘
2
. Then, we use the approximation 𝑛 ≤

𝜇 ≤ 𝑛 ln(𝑘). By a Chernoff bound, the probability that more than

𝐶 ln(𝑛) 𝑛𝑦
𝑘
≥ 𝐶

2
𝑛 ln(𝑛) samples are needed is at most

exp

(
−
(𝐶

2
− 1)2

2 + 𝐶
2
− 1

𝑛

)
≤ exp

(
−1

2

𝑛

)
.

Next, suppose that 𝑦 < 𝑘
2
. Then, we use the (crude) approxima-

tions 1 ≤ 𝜇 ≤ 𝑛𝑦

𝑘
. By a Chernoff bound, the probability that more

than 𝐶 ln(𝑛) 𝑛𝑦
𝑘

samples are needed is at most:

exp

(
− (𝐶 − 1)2 ln(𝑛)2

2 + (𝐶 − 1) ln𝑛

)
≤ 𝑛−𝐶+3 .

□

B MISSING PROOF: INSERTION-DELETION
STREAM LOWER BOUND

Lemma 6.1 We have:

𝐼 (𝑋 𝐽 : 𝑀𝐽𝑌𝑋𝑌) ≥ (1 − 𝜖)𝑚 − 1 .

https://doi.org/10.1109/SFCS.2001.959901
https://doi.org/10.1109/SFCS.2001.959901
http://dl.acm.org/citation.cfm?id=646255.684566
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/859716.859719
https://doi.org/10.1145/3132465.3132474
https://doi.org/10.1016/j.tcs.2005.09.013
http://dl.acm.org/citation.cfm?id=327766.327782
http://dl.acm.org/citation.cfm?id=327766.327782
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1145/762471.762473
https://doi.org/10.1109/INFOCOM.2006.326
http://dl.acm.org/citation.cfm?id=1287369.1287400
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1145/3147.3165

Frequent Elements with Witnesses in Data Streams Conference’17, July 2017, Washington, DC, USA

Proof. Let 𝑂𝑢𝑡 be the output produced by the protocol for

Augmented-Matrix-Row-Index.Wewill first bound the term 𝐼 (𝑂𝑢𝑡 :

𝑋 𝐽) = 𝐻 (𝑋 𝐽) −𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡). To this end, let 𝐸 be the indicator ran-

dom variable of the event that the protocol errs. Then, P[𝐸 = 1] ≤ 𝜖 .

We have:

𝐻 (𝐸,𝑋 𝐽 | 𝑂𝑢𝑡) = 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡) + 𝐻 (𝐸 | 𝑂𝑢𝑡, 𝑋 𝐽) = 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡) ,
(11)

where we used the chain rule for entropy and the observation that

𝐻 (𝐸 | 𝑂𝑢𝑡, 𝑋 𝐽) = 0 since 𝐸 is fully determined by 𝑂𝑢𝑡 and 𝑋 𝐽 .

Furthermore,

𝐻 (𝐸,𝑋 𝐽 | 𝑂𝑢𝑡) = 𝐻 (𝐸 | 𝑂𝑢𝑡) + 𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡)
≤ 1 + 𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡) , (12)

using the chain rule for entropy and the bound 𝐻 (𝐸 | 𝑂𝑢𝑡) ≤
𝐻 (𝐸) ≤ 1. From Inequalities 11 and 12 we obtain:

𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡) ≤ 1 + 𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡) . (13)

Next, we bound the term 𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡) as follows:
𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡) = P [𝐸 = 0] 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡, 𝐸 = 0)

+ P [𝐸 = 1] 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡, 𝐸 = 1) . (14)

Concerning the term 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡, 𝐸 = 0), since no error occurs,

𝑂𝑢𝑡 determines 𝑋 𝐽 . We thus have that 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡, 𝐸 = 0) = 0.

We bound the term 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡, 𝐸 = 1) by 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡, 𝐸 = 1) ≤
𝐻 (𝑋 𝐽) = 𝑚 (since conditioning can only decrease entropy). The

quantity 𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡) can thus be bounded as follows:

𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡) ≤ (1 − 𝜖) · 0 + 𝜖𝐻 (𝑋 𝐽) = 𝜖𝐻 (𝑋 𝐽) . (15)

Next, using Inequalities 13 and 15, we thus obtain:

𝐼 (𝑂𝑢𝑡 : 𝑋 𝐽) = 𝐻 (𝑋 𝐽) − 𝐻 (𝑋 𝐽 | 𝑂𝑢𝑡)
≥ 𝐻 (𝑋 𝐽) − 1 − 𝐻 (𝑋 𝐽 | 𝐸,𝑂𝑢𝑡)
≥ 𝐻 (𝑋 𝐽) − 1 − 𝜖𝐻 (𝑋 𝐽)
= (1 − 𝜖)𝐻 (𝑋 𝐽) − 1 = (1 − 𝜖)𝑚 − 1 .

Last, observe that 𝑂𝑢𝑡 is a function of 𝑀, 𝐽 , 𝑌 and 𝑋𝑌 . The result

then follows from the data processing inequality. □

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Further Related Work
	1.4 Outline

	2 Preliminaries
	3 Algorithm for Insertion-only Streams
	3.1 Degree-based Reservoir Sampling
	3.2 Main Algorithm
	3.3 Extension to Star Detection

	4 Lower Bound for Insertion-only Streams
	4.1 An (n/2) Lower Bound via Multi-party Set-Disjointness
	4.2 Inequalities Involving Entropy and Mutual Information
	4.3 Hard Communication Problem: Bit-Vector Learning
	4.4 Lower Bound Proof for Bit-Vector Learning
	4.5 Reduction: FEwW to Bit-Vector Learning

	5 Upper Bound for Insertion-deletion Streams
	6 Lower Bound for Insertion-deletion Streams
	6.1 The Augmented-Matrix-Row-Index Problem
	6.2 Lower Bound Proof for Augmented-Matrix-Row-Index
	6.3 Reduction: FEwW to Augmented-Matrix-Row-Index

	References
	A Sampling Lemma
	B Missing Proof: Insertion-deletion Stream Lower Bound

