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Abstract

In scientific computing, Space Filling Curves are a widely used tool for one-constraint domain de-
composition. They provide a mechanism to sort multi-dimensional data in a locality preserving way,
and, in this way, a (one dimensional) list of mesh elements is established which is subsequently split
into partitions under consideration of the constraint. This procedure has a runtime of O(N logN) (N
is the number of mesh elements) while nearly perfect load balancing can be established with reasonable
partition surface sizes.

In this work, we discuss the extensibility of this procedure to two-constraint settings which is desirable,
since the methodology is extremely fast. Here, the splitting operation is subject to two constraints, and,
unlike to the one-constraint case, obtaining near perfect balancing is often hard to establish, and is, even
more as in the one-constraint case, in conflict with the induced surface sizes (or edge-cuts). We discuss
multiple strategies to tackle the splitting, and we present a fast, O(N logN) splitting heuristic algorithm
which provides an integer σ that allows to trade off between balancing and surface sizes which results
in a O(N logN) two-constraint decomposition method. Results are compared to the multi-constraint
domain decomposition abilities implemented in the Metis software package, and show that the method
produces higher surface sizes, but is orders of magnitudes faster which makes the method superior for
certain applications.

1 Introduction

Combinatorial Scientific Computing (CSC) [8] comprises combinatorial problems arising in computational
science. Especially in parallel settings, many problems, such as load balancing, optimizing data flows through
interconnection networks, or the determination of independent data units, arise, and can be tackled by a
combinatorial formulation, e.g. as graph partitioning problems, as flow networks or graph coloring problems.
The quality of solutions to these problems impact significantly on the performance of the application [8].
Hendrickson and Pothen manifest this fact by entitling one of their papers with “Combinatorial Scientific
Computing: The Enabling Power of Discrete Algorithms in Computational Science” [8].

Since many of the CSC problems are NP-complete, good heuristics are required, and, if the problem has
to be solved during the execution of the parallel application, these heuristics should have low runtimes, which
is in general in conflict with the quality of the solutions. These facts already announce that the selection
of an appropriate method is highly problem dependent, and it is desirable that a variety of methods with
different characteristics exist.

The present work considers domain decomposition problems, that is, given a computational mesh con-
sisting of arbitrary elements, find a mapping that assigns a partition number to each element. Typically,
there are at least two demands on the decomposition, that is, the work load should be distributed equally,
and the surfaces between partitions should be as small as possible in order to minimize communication in
case of data dependencies among adjacent elements across partition boundaries.

We assume work load to be distinguishable per mesh element. We model it as a mapping attaching a
positive number to each mesh element which is proportional to the work load induced by this mesh element,
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and we denote such mappings as weights. One-constraint (one weight) problems arise in many parallel mesh-
based computations such as Finite Element (FE) type methods for wave propagation problems [17], or the
Direct Simulation Monte Carlo (DSMC) method for gas flow problems [25].

In this work we focus on situations where two weights are present which is for instance the case for
scientific applications with two independent computational phases. As shown in figure 1, the processes are
synchronized not only at the beginning of each time step, but also between the independent computational
phases of each time step.

proc 1

proc 2

timetimestep t timestep t+ 1

phase 1

phase 2

idle time

Figure 1: Two phase computation on two processors: each timestep consists of two independent computa-
tional phases. A load balancing strategy has to consider both phases.

Particle simulations such as the Particle-In-Cell (PIC) method [9] for plasma computations are a special
type of two phase computation. At its origins, this work was inspired by a particular PIC application,
however, we want to underline that we focus here on the general setting of two-constraint (two weight)
problems. We refer to particle simulations to provide an illustrative example.

In the PIC method phase one corresponds to the solution of the Maxwell equations on a computational
mesh, which imposes a first balancing constraint. In phase two, particles are moved. Since particles interact
with their surrounding element, it is beneficial to place them onto the same processor as their governing
elements. Hence, a domain decomposition has to balance both, the number of elements per partition, and
the number of particles per partition.

Research on load balancing schemes for parallel PIC simulations is conducted since at least two decades,
and a multitude of strategies different to what we discuss here were proposed, see for instance the general
discussion by Carmona and Chandler [3] or a recent work by Nakashima et al. [18]. They, as well as many
other works (e.g. [7]), follow a completely different approach which does not require that both, particles
and mesh elements are balanced in each partition. They use a static grid decomposition independently of
the particles. Their approach to handling the imbalance induced by the particles is a helping scheme where
processors with few particles help processors that are overpopulated with particles.

Here, we do not wish to lead a discussion on load balancing schemes for PIC simulations, our goal is simply
to provide the reader a descriptive two-constraint example. Figure 2 illustrates the two arrising constraints
we aim to balance, that is the number of mesh elements and the number of particles per partition. The
illustration on the right displays a solution balancing both constraints.
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Figure 2: A two-constraint domain decomposition problem. Left: number of elements is balanced (one
constraint), Center: number of particles is balanced (one constraint), Right: number of particles and number
of elements is balanced (two constraints).

Furthermore, the example of a particle simulation also demonstrates the need for a fast domain decompo-
sition method. Since particles move throughout the simulation, they may leave the domain of a processor’s
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partition and consequently migrate to another processor. However, in doing so, this induces imbalance for
the second phase, and, if the imbalance grows too significantly, a domain redecomposition during the exe-
cution of the simulation is required. For instance Wu and Tseng report in [10] on a scientific application
based on particles applying dynamic domain decomposition for the balancing of one weight.

In this paper we discuss domain decomposition for two-constraint problems based on Space Filling Curves
(SFCs). The outline of this paper is as follows.

In section 2 we briefly state related works, section 3 introduces necessary notations. We discuss one-
constraint domain decomposition with SFCs in section 4 to provide the necessary armamentarium for the
extension of this method to two-constraints. This extension to two-constraints is the main contribution of
this paper, and we discuss this in detail in section 5. In section 6 we demostrate the potential of this method
with an example, and we conclude with section 7.

2 Related work

Domain decomposition with SFCs is matter of ongoing research. Publications range from theoretical discus-
sions of the locality of SFCs, e.g. [4, 26, 5], which is directly related to the induced surfaces of a partitioning,
to applications that profit of domain decompositions with SFCs e.g. [6]. However, to our best knowledge,
there are no attempts to apply SFCs as a device for two-constraint domain decomposition.

Besides SFCs, domain decomposition problems are often tackled as graph partitioning problems. Robust
graph partitioning software packages exist (such as Metis [22], Chaco [20], Jostle [21], Scotch [23]) which
are convenient to apply, and result in good quality partitionings by reasonable runtimes. Schamberger and
Wierum provide in [24] a comparison of Metis and SFC induced partitions aiming to produce partitions of
equal sizes. It is difficult or impossible to derive absolute conclusions but, clearly, SFCs save a lot of time as
well as memory resources by reasonably larger surfaces.

To our best knowledge, the only domain decomposition methods that are capable of balancing two-
constraints are graph (and hypergraph) partitioners. Full multi-constraint graph partitioning [14] is imple-
mented in the Metis package to which we compare our results.

3 Preliminaries

Throughout the paper, we consider an arbitrary triangulation T = {τi|1 ≤ i ≤ N} into N arbitrary elements

(τi)i=1...N , such that our geometry Ω =
⋃

i τi ⊆ [0, 1]
d
, where d ∈ {2, 3} is the dimensionality. For the sake of

simplicity, we restrict Ω to be a subset of the d-dimensional unit cube, since we define SFCs on this domain.
cg(τi) denotes the center of gravity of an element τi. We assume f : [0, 1] → [0, 1]

d
to be some continuous

SFC and we assume the presence of some computation scheme that allows to approximate f−1 sufficiently
exact.

A domain decomposition of T into p parts is a mapping d : T → [1, p], we write [a, b] = {a, a+ 1, . . . , b}
for integers a, b with b ≥ a. We denote Pi = {j | d(τj) = i}, i = 1 . . . p, the partitions induced by d. A weight

is a mapping ω : T → R
+, and we assume for simplicity that

∑

τ∈T

ω(τ) = 1. In the one-constraint situation

(section 4), we assume the presence of one weight ω1, in the two-constraint setting (section 5) we add a
second weight ω2.

The load of a partition Pi with respect to a weight ω is defined as
l(Pi, ω) =

∑

j∈Pi
ω(τj). We measure the imbalance of a weight ω as

µ(ω) = p ·max{l(Pi, ω) | 1 ≤ i ≤ p}.
For a vector v we denote by max v the largest element of v, and by min v the smallest element of v.
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4 One-constraint domain decomposition with Space Filling

Curves

The usual procedure to decomposing T along the SFC f is as follows:

1. Index computation: ∀i : hi = f−1(cg(τi))

2. Sorting: Find a permutation π ∈ S[1,N ] such that hπ−1(i) < hπ−1(j) ∀i < j.

3. Splitting: Find a vector of separators s ∈ N
p−1 with 0 < s1 < · · · < sp−1 < N (throughout the

document we assume s0 = 0, sp = N) such that µ(ω1) with respect to the partitions Pi = {τj | si−1 <
π(j) ≤ si} is minimized.

The domain decomposition d can be stated as: d(τi) = min{k |π(i) ≤ sk}.
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Figure 3: Domain decomposition of a U-shaped geometry into 3 partitions along the Hilbert curve: SFC
indices are computed (1) and sorted (2). The histograms display the distribution of the Hilbert indices of
the mesh elements. (3) indicates the splitting operation.

Figure 3 visualizes the one-constraint decomposition procedure. In this example, we apply a constant
weight function ω1 = 1/N which corresponds to the aim of balancing the number of mesh elements per
partition.

The index computation depends on the SFC f , we assume that the computation of an index can be done
in O(log N) 1 time, hence the index computation performs in O(N log N) time. With a standard sorting
algorithm the sorting step equally performs in O(N log N).

The splitting problem is a well studied problem in the literature. We define it here precicely (decoupled
from our application at hand) since two-constraint decomposition differs from one-constraint decomposition
at this point.

Problem 4.1. Let N > p > 0, and W = (w1, . . . , wN ) ∈ (R+)N with wi > 0 and
∑

i wi = 1. A solution
to the one-constraint splitting problem is a vector s ∈ N

p−1 with 0 < s1 < s2 < · · · < sp−1 < N
(s0 = 0, sp = N), such that:

I1(s) = max{
si∑

i=si−1+1

wi | 0 < i ≤ p} (1)

is minimal.

1Most computation schemes of SFC indices grow linearly with the desired precision, e.g. the Butz-algorithm [16, 2], or,
more recently, a table driven framework [11]. We state logarithmic time since we require a precision of O(log N) in order to
distinguish N different elements.
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By setting wi = ω1(τπ−1(i)) we obtain the input to the one-constraint splitting problem.
To our best knowledge Bokhari [1] provided the first algorithm for this problem with a runtime of O(N3p).

After a series of improvements Khana et al. proposed in [15] an O(N logN) algorithm independent of p.
Plugging this algorithm into this decomposition scheme allows us to compute a solution to the one-constraint
domain decomposition problem in O(N logN) time.

We finish this section by showing that I1(s) can be bounded from above. We need this lemma in the
analysis of our two-constraint splitting heuristic in section 5.3.6.

Lemma 4.2. Let W,N, p be a one-constraint splitting problem instance with solution s. Furthermore, let
wmax = maxW . Then:

I1(s) ≤
1

p
+ wmax. (2)

Proof: A splitting s′ fulfilling equation 2 can be constructed by traversingW from left to right, accumulating
the wi and setting a separator when the accumulated value is about to exeed 1

p
+ wmax. By definition

I1(s) ≤ I1(s
′) which proofs the claim.

�

5 Two-constraint domain decomposition with Space Filling

Curves

In this section, we assume the presence of a second weight ω2 : T → R
+. To compute a domain decompo-

sition, we follow the same procedure index computation, sorting, splitting as in the one-constraint setting,
however, we obtain a different setting for the splitting operation. While the one-constraint splitting problem
corresponds to a vector splitting problem, an intuitive representation of the two-constraint splitting problem
is the extension of the vector W to a (R+)N×2 matrix (which we continue by denoting with W ) - each row
corresponds to one weight - which is to be split by vertical separators.

A straightforward way to split this N × 2 matrix is to do it as in the one-constraint case: find p − 1
separators such that a convex combination of the imbalances of the two weights is minimal. We define this
formally:

Problem 5.1. Let N > p > 0, α ∈ (0, 1),

W =

(
w1

1 . . . w1
N

w2
1 . . . w2

N

)

∈ (R+)N×2 (3)

with for j ∈ {1, 2} : ∑iw
j
i = 1. A solution to the two-constraint splitting problem is a vector s ∈ N

p−1

with 0 < s1 < s2 < · · · < sp−1 < N (s0 = 0, sp = N) such that:

I2(s) = α ·max{
si∑

j=si−1+1

w1
j | 0 < i ≤ p}+ (4)

(1− α) ·max{
si∑

j=si−1+1

w2
j | 0 < i ≤ p}

is minimal.

This problem definition comes along with two major issues. Firstly, from a computational point of view
the two-constraint splitting problem seems much more difficult than the one-constraint splitting problem.
We are only able to come up with an O(N5p2) algorithm (see section 5.1) to this problem which is far from
being pratically applicable. We aim to design a fast method preferably in O(N logN) time. There is surely
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space for improvement, future research might bring down the complexity or lead to good approximation
algorithms, however, so far we can not solve this problem sufficiently efficient.

Secondly, depending on the concrete decomposition instance at hand, even though we could solve this
problem exactly in appropriate time, solutions might still result in huge imbalance. Consider the following
example for p = 2:

w1
i =

2

N2
i (5)

w2
i =

2

N
− 2

N2
i. (6)

w1 increases linearly while w2 decreases linearly. Setting α = 1
2 in equation 4, the optimal solution is

splitting the two partitions at N
2 which distributes the weights among the 2 partitions in a ratio of 3 : 1.

This is unsatifactory for a load balancing scheme. This example, though highly artificial, demonstrates the
weakness of this approach. It is hard to balance two weights that are oppositionally distributed with respect
to the linear ordering of the underlying SFC.

In this example, perfect load balancing can, however, be established by allowing a further separator.
Forming partition 1 by the intervals [1, 0.25N ] and [0.75N,N ], and partition 2 by the interval [0.25N, 0.75N ]
leads to perfect load balancing. Allowing more separators than partitions increases the edge cut of the
resulting decomposition (one interval corresponds roughly to one connected component), allows, however, to
obtain better load balancing. Based on this intuition we define what we call the parametrized two-constraint
splitting problem:

Problem 5.2. Let N > q > p > 0, α ∈ (0, 1),

W =

(
w1

1 . . . w1
N

w2
1 . . . w2

N

)

∈ (R+)N×2 (7)

with for j ∈ {1, 2} :
∑

iw
j
i = 1. A solution to the parametrized two-constraint splitting problem is a

vector s ∈ N
q−1 with 0 < s1 < s2 < · · · < sq−1 < N (s0 = 0, sq = N) and a mapping m : [1, q]→ [1, p] such

that:

I2(s) = α ·max{
∑

t∈m−1(i)

st∑

j=st−1+1

w1
j | 0 < i ≤ p}+ (8)

(1− α) ·max{
∑

t∈m−1(i)

st∑

j=st−1+1

w2
j | 0 < i ≤ p}

is minimal.

We will show in section 5.2 that this problem is NP-hard in parameter q and we do not try to solve this
problem directly. The main contribution of this paper is a two-constraint decomposition heuristic that can
be seen as a heuristic for the parametrized two-constraint splitting problem with parameter q = σp for some
integer σ > 1. We discuss this method in section 5.3 in detail.

5.1 An algorithm for the two-constraint splitting problem

In this subsection we provide an algorithm for the two-constraint splitting problem. Equation 4 is a weighted
sum of the maxima of two sets. A set comprises p sums, an ith sum corresponds to the weight that goes
to partition Pi. The partition separators si−1, si uniquely define partition Pi, and hence they equally define
the values of the corresponding sums of Pi.

Say we know that there is an optimal solution minimizing I2 with partitions Pm1 , Pm2 (1 ≤ m1,m2 ≤
p) posing the two maxima of each term in equation 4 (our algorithm iterates over all possible maxima
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memberships). To uniquely define Pm1 and Pm2 we have to set up at most 4 partition separators (our
algorithm will iterate over all possible setups). Now, given these partition separators defining unambiguously
Pm1 and Pm2 , we have to check whether the remaining partition separators can be set up such that Pm1 , Pm2

remain the partitions that pose the maxima of equation 4. We will show that this constructive check can be
done in O(N) time.

Lemma 5.3. Let 1 ≤ m1,m2 ≤ p. W.l.o.g. we assume that m1 ≤ m2. Furthermore, if m1 6= m2 let
s ∈ N

p−1 with m1 − 1 ≤ sm1−1 < sm1 ≤ sm2−1 < sm2 ≤ N − (p − m2), otherwise let s ∈ N
p−1 with

m1− 1 ≤ sm1−1 < sm1 < N − (p−m1). Then there is an O(N) algorithm that checks in a constructive way
whether the remaining partition separators si, i /∈ {m1 − 1,m1,m2 − 1,m2} can be set up such that the two
maxima of equation 4 are given by Pm1 and Pm2 .

Proof: Firstly, we compute M1 =
∑sm1

i=sm1−1
w1

i and M2 =
∑sm2

i=sm2−1
w2

i (clearly in O(N)). We split the

remaining indices into three sets {s1, . . . , sm1−2}, {sm1+1, . . . , sm2−2}, and {sm2+1, . . . , sp−1} 2. For each
of these sets we check whether the partition separators can be set such that the weights of the induced
partitions do not exceed M1 and M2. This can be done by a traversal of W from left to right: we accumulate
the w1

i in acc1 and the w2
i in acc2, and we set a partition separator if either acc1 is about to exceed M1, or if

acc2 is about to exceed M2. Once a partition separator is set, we reset the accumulators to 0 and we restart
accumulating the weights. If this procedure succeeds for all sets, we return s, otherwise we return false.

�

Theorem 5.4. There is an algorithm that computes an optimal splitting s′ of W into p parts in O(N5p2).

Proof:

Algorithm 1 Algorithm for the two-coinstraint splitting problem

1: s′ = ⊥,m =∞
2: for all (m1,m2) ∈ [1, p]

2
do

3: for all interval boundary settings s defining intervals m1,m2 do

4: if extend s to a well-formed solution according to lemma 5.3 then

5: if I2(s) < m′ then

6: m′ = I2(s), s
′ = s

7: end if

8: end if

9: end for

10: end for

11: return s′

The correctness of algorithm 2 follows by construction. The outer loop is executed p2 times, the inner
loop is executed O(N4) times, since there are O(N4) possibilities to define 4 partition separators. The body
of the loop, that is the extension of s according to lemma 5.3, and the computation of I2(s) requires O(N)
time, in total O(N5p2).

�

Remarks The main difficulty in designing an algorithm for this problem is that I2 exhibits a multitude
of local minima while this is not the case for I1 in the one-contraint splitting problem. For this reason do not
know how to adapt existing one-constraint splitting algorithms (see [19] for an overview, but as well [15]),
to the two constraint setting.

Furthermore, we want to point out that our algorithm can be straightforwardly extended to tackle c-
constraint splitting problems (c ≥ 2) with a runtime of O(pcN2c+1c).

2If the right delimiter of a set is larger than the its left then we consider the set to be empty.
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5.2 The parametrized two-constraint splitting problem is NP-hard in q

We provide a reduction from the NP-complete problem PARTITION, see for instance [13].

Problem 5.5. The partitioning problem (PARTITION) consists of, given a set of positive integers M =
{m1, . . . }, |M | <∞, splitting M into two disjoint subsets M1,M \M1 such that the discrepancy |∑m∈M1

m−
∑

m∈M\M1
m| is minimal.

Theorem 5.6. The parametrized two-constraint splitting problem is NP-hard.

Proof: Given an instance of PARTITION (that is the set M), we show how to solve it with the help of an
algorithm A for the parametrized two-constraint splitting problem. set N = q = |M |, p = 2,

W =

(
m1 . . . m|M|

m1 . . . m|M|

)

as the input to algorithm A. The two obtained partitions state as well the solution to the PARTITION
problem.

�

Remarks The not here defined parametrized one-constraint splitting problem is already NP-hard. Fur-
thermore, note that the reduction creates an instance s.t. N = q showing the hardness for this specific
setting. For demonstrating that the problem is hard for arbitrary N , there is a quite technical construction
to split up the mi appropriately to obtain in total N numbers such that a solution to this parametrized
two-constraint problem still uniquely solves the underlying PARTITION instance.

5.3 Fast heuristic for two-constraint decomposition problems

This subsection presents our fast splitting heuristic for the two-constraint splitting problem which we consider
the main contribution of this paper.

We consider the N × 2 matrix W with non-negative entries as in problem 5.1 with the same notation for
its entries which we repeat here for the sake of clarity:

W =

(
w1

1 . . . w1
N

w2
1 . . . w2

N

)

∈ (R+)N×2. (9)

Line one corresponds to a weight ω1, line two corresponds to a weight ω2. When speaking in the sequel
about the balancing of ω1 (ω2), we refer to the balancing of line 1 (2) of matrix W . This matrix is to be
split into p partitions. In the following, we deal with matrix subparts denoted by Wi and Wij of W that are
the result of a splitting of W by vertical separators such that:

W = (W1 |W2 | . . . ) , (10)

Wi = (Wi1 |Wi2 | . . . ) . (11)

For c = 1, 2 we introduce the abbreviations

lci =
∑

wc
j
∈Wi

wc
j , (12)

lcij =
∑

wc
l
∈Wij

wc
l , (13)

wc
max = max{wc

i }. (14)

Furthermore, we assume an integer σ ≥ 2. The algorithm consists of two phases which we denote as the
splitting phase, and the reunification phase.
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5.3.1 The splitting phase

In the splitting phase, firstly, matrix W is split into σ parts W1, . . . ,Wσ by applying the one-constraint
splitting operation as described in section 4, balancing the first line of W (hence ω1), and it holds by lemma
4.2 that:

l1i ≤
1

σ
+ w1

max ∀i : 1 ≤ i ≤ σ, (15)

where w1
max denotes the largest element of the first line of W . Secondly, each of these σ matrix parts is

split into p parts balancing the second line by the application of a one-constraint splitting algorithm. Again
by lemma 4.2 we obtain:

l2ij ≤
l2i
p
+ w2

max ∀i, j : 1 ≤ j ≤ p, 1 ≤ i ≤ σ, (16)

w2
max denotes the largest element of the second line of W . The splitting phase is visualized in figure 4.

W
1
1

split W into W1, . . . ,Wσ balancing ω1

W1

∼ 1/σ

l2
1

W2

∼ 1/σ

l2
2

Wσ

∼ 1/σ

l2σ

split each Wi into Wi1, . . . ,Wip balancing ω2

Wi−1 Wi+1Wi

Wi1

l1
i1

∼ l2
i
/p

Wip

l1
ip

∼ l2
i
/p

Figure 4: The splitting phase of our two-constraint algorithm. The blue and the red color indicate matrix
parts consisting of the same weight.

5.3.2 The reunification phase

In the reunification phase, the partitions P1, . . . , Pp are determined. A partition consists of σ matrix parts,
whereas from each (Wi)i=1,...,σ one (Wij)j=1,...,p is taken. Figure 5 illustrates this procedure.

Concerning the weight balancing, note that any reunification automatically balances ω2. Since ω2 is
balanced within each (Wi)i=1,...,σ, and the p parts (Wij)j=1,...,p of each Wi are scattered to the p partitions,
the ω2 contribution of each Wi to the partitions is equal. For this reason, the reunification problem consists
of forming partitions, such that the balancing of ω1 is optimal.

We decouple the reunification problem from the matrix splitting problem, and discuss it independently.

Problem 5.7. The reunification problem (REUNIFICATION) consists of, given σ, p ≥ 2, the vectors
S1, . . . , Sσ ∈ (R+)p, find Q1, . . . , Qp ∈ [1, p]

σ
with Qi

k = Qj
k ⇔ i = j such that:

max{
σ∑

i=1

Si
Qk

i
| k = 1, . . . p} → min . (17)
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Figure 5: The reunification phase of our two-constraint algorithm. The green and the violet color represent
final partitions. A final partition consists of σ matrix subparts taken from W1, . . . ,Wσ. Each matrix subpart
Wij contains two weights l1ij and l2ij , however, since ω2 is balanced automatically by the reunification, this
weight is not illustrated here.

In our setting we have Si = (l1i1, l
1
i2, . . . , l

1
ip). The resulting Qi indicate which matrix subpart Wij goes

to which partition Pi.
As we will show in the following subsection, REUNIFICATION is NP-hard. However, since the quality

of the solution to the REUNIFICATION problem directly translates to the imbalance of ω1 of the decom-
position, a good heuristic is required. In subsection 5.3.4, we present a fast heuristic to the problem.

5.3.3 REUNIFICATION is NP-hard

Theorem 5.8. REUNIFICATION is NP-hard.

Proof: For showing that REUNIFICATION is NP-hard, we provide a reduction from PARTITION (problem
5.5) to REUNIFICATION. Let M = {m1, . . . ,mN} be a set of N positive integers, which we aim to split into
two disjoint subsets such that the discrepancy is minimal. We construct now a REUNIFICATION problem
that solves a PARTITION instance. For this, we set p = 2, σ = N . Furthermore, we set S1 = (0,m1), S

2 =
(0,m2), . . . , S

σ = (0,mN ). An algorithm for REUNIFICATION provides partitions P1, P2 that state the
solution to the PARTITION problem.

�

5.3.4 A heuristic for REUNIFICATION

The reduction of PARTITION to REUNIFICATION shows that these two problems are structurally similar.
In this subsection, we propose a heuristic for REUNIFICATION that is a natural extension of the largest
differencing method (LDM) of Karmarkar and Karp [12], the best known heuristic for PARTITION.

To solve PARTITION, LDM starts with a sorted list of N numbers. Each step, it decides that the two
largest elements l1, l2 of this list go into different partitions. It removes l1, l2 from the list, computes their
difference |l1 − l2|, and inserts this difference again into the list. |l1 − l2| is the imbalance that is caused by
the decision that l1 and l2 go into different partitions. Note, that it is not yet decided into which partition
l1 and l2 go. The difference is reinserted into the list, since the algorithm aims to even out the imbalance.
By keeping track of the procedure the two partitions can be determined bottom-up.

We construct a heuristic for REUNIFCATION that is structurally similar to LDM. The REUNIFI-
CATION problem consists of σ vectors S1, . . . , Sσ. For these vectors Si we define their diameters as
d(Si) = maxSi − minSi. Analogous to the LDM, we group the sets (Si)i=1...σ in a data structure L
where the ordering is with respect to their diameters (d(L[1]) ≥ d(L[2]) ≥ . . . ). We subsequently merge
L[1], L[2], the vectors with the largest diameter, via the merge operation shown in algorithm 2.
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Algorithm 2 Merge operation

Require: Sj , Sk

1: R ∈ (R+)p

2: sort Sj in ascending order
3: sort Sk in descecnding order
4: ∀i : R[i]← Sj[i] + Sk[i]
5: return R

To highlight that the vectors Sj , Sk, R are realized with some data structures, brackets are used for
accessing elements. L[1], L[2] are removed from L, and merge(L[1], L[2]) is inserted to the list. While in the
LDM, two numbers are substituted by their difference, here, two diameters d(Sj), d(Sk) are replaced by a
new diameter, and we will show that it holds that |d(Sj)−d(Sk)| ≤ d(merge(Sj , Sk)) ≤ max{d(Sj), d(Sk)}.
This procedure is repeated until there remains one final vector S′. The diameter of S′ translates to the
imbalance of the partitioning.

Algorithm 3 shows the entire algorithm.

Algorithm 3 Reunification heuristic

Require: L
1: while |L| > 1 do

2: R← merge(L[1], L[2])
3: L.remove(L[1])
4: L.remove(L[2])
5: L.insert(R)
6: end while

Table 1 shows an example of our reunification heuristic.

5.3.5 Runtime of the two-constraint splitting heuristic

During the splitting phase, a one-constraint splitting of W is performed into σ parts in O(N logN) time.
Secondly, we split each Wi, . . .Wσ into p parts. Their runtimes sum up to O(N logN) since the cardinalities
of the Wi sum up to N . The splitting phase hence runs in O(N logN).

During the reunification phase we need O(σp + σ log σ) time to set up the data structure L (diameter
computation and sorting). We perform σ − 1 merge operations. The runtime of the merge operation is
dominated by the sort operations, hence it runs in O(p log p). We account a factor O(log σ) for the insert
operation of the data structure L. Hence, in total we obtain a runtime of O(σ(p log p + log σ)) for the
reunification phase, and a runtime of the two-constraint splitting heuristic of O(σ(p log p+ logσ)+N logN)
which is O(N logN) under the reasonable assumption that σp = O(N).

5.3.6 Quality of the two-constraint splitting method

Firstly, ω2, that is the second line of matrix W , is balanced automatically by the method. In the worst-case
setting the imbalances of the σ one-constraint splittings accumulate in one final partition, hence the load of
the partition is limited as follows:

l(Pi, ω2) ≤ 1

p
+ σw2

max ∀i. (18)

This leads to the imbalance:

µ(ω2) ≤ 1 + pσw2
max, (19)
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Obtain the partitions:
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 =





8 + 7 + 7 + 6
12 + 0 + 13 + 1
2 + 9 + 11 + 5



.

Table 1: Reunification heuristic for an example with σ = 4 and p = 3. The numbers below the Wi denote
their diameters. The heuristic finds a reunification with a discrepancy of 2. In this example, a best solution
with an imbalance of 0 exists.

In order to analyze the balancing of ω1, we require the following lemma:

Lemma 5.9. Let s = (s1, s2, . . . , sp) ∈ (R+)p with s1 ≥ s2 ≥ · · · ≥ sp, t = (t1, t2, . . . , tp) ∈ (R+)p with
t1 ≤ t2 ≤ · · · ≤ tp. W.l.o.g. we assume that |s1 − sp| ≥ |tp − t1|. Then:

(s1 − sp)− (tp − t1) ≤ max{si + ti |i} −min{si + ti |i} ≤ |s1 − sp|. (20)

Proof: Let 1 ≤ i ≤ p. We prove the first “≤”:

(s1 − sp)− (tp − t1) = s1 + t1 − (sp + tp) (21)

≤ max{si + ti |i} −min{si + ti |i}. (22)

We prove the second “≤”: Let imax, imin be the indices responsible for the maxima and minima in
equation 20.

max{si + ti |i} −min{si + ti |i} = simax
+ timax

− simin
− timin

(23)

= simax
− simin

︸ ︷︷ ︸

A

+ timax
− timin

︸ ︷︷ ︸

B

(24)

case 1: imax ≤ imin ⇒ A ≤ s1 − sp, B ≤ 0⇒ (25)

A+B ≤ s1 − sp X

case 2: imax > imin ⇒ A ≤ 0, B ≤ tp − t1 ≤ s1 − sp ⇒ (26)

A+B ≤ s1 − sp X

�

Corollary 5.10.

|d(S1)− d(S2)| ≤ d(merge(S1, S2)) ≤ max(d(S1), d(S2)). (27)
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For ω1 we can state the following worst-case scenario: due to equation 15, we have l1ij ≤ l1i ≤ 1/σ +
(ω1)max. Due to the upper bound of corollary 5.10, it holds for the maximal load difference of two partitions
that |l(Pi, ω1)− l(Pj, ω1)| ≤ 1/σ+(ω1)max ∀i, j. We obtain an upper bound by assuming that the partition
with the maximal load Pimax

has the mentioned load difference to all other partitions. In that case we obtain:

1 =
∑

i

l(Pi, w1) (28)

= l(Pimax
, w1) +

∑

i6=imax

l(Pi, w1) (29)

≥ l(Pimax
, w1) + (p− 1)(l(Pimax

, w1)− 1/σ − (ω1)max) (30)

⇒ (31)

µ(ω1) ≤ 1 +
p− 1

σ
+ (p− 1)(ω1)max. (32)

This worst-case bound is quite unsatisfactory since it requires large σ values to guarantee an accept-
able imbalance of ω1. However, we experienced that for most practical problems the imbalance decreases
expeditiously with the increase of σ. We verify this in the following test case.

6 Practical issues and comparison with Metis

To illustrate the capabilities of our two-constraint method, in this section we provide a two-constraint
decomposition problem that arises in a parallel PIC simulation. The underlying mesh consists ofN = 3245588
unstructured tetrahedra, and it is visualized in figure 6:

Figure 6: Left: cylindric mesh of 3245588 unstructured tetrahedra. The mesh is a cylinder with a small
cylinder in its center cut out. For the visualization, the left half is cut away. Right: particles inside the
mesh. For the visualization, the tetrahedra of the right half of the geometry are not displayed.

The two weights are defined as follows. ω1 corresponds to the load induced for a first computational
phase, ω2 corresponds to the load induced for a second computational phase. We set ω1(τi) = α if the
x-coordinate of the center of gravity of an tetrahedron is smaller than 0.5, otherwise we set ω1(τi) = 5 · α,
for α correctly chosen such that

∑

τi
ω1(τi) = 1. Hence, we assume that the load for the first computational

phase induced by a tetrahedron that is located in the right half of the geometry is 5 times the load of a
tetrahedron that is located in the left half.

The particles determine the load for the second computational phase. ω2(τi) is chosen to be the number
of particles that reside in τi divided by the total number of particles for normalization. For this test case we
put between 1 to 50 particles into a tetrahedron while this number grows linearly with y coordinate of the
center of gravity of a tetrahedron. This choice is somewhat arbitrary, we try to simulate a realistic setting.

Before considering the decomposition quality (edge-cut and balancing), we discuss the runtime of the
method in comparison to Metis. Even though we claim that the benefit of our method is clearly the runtime,
we point out that this issue has to be carefully considered.

13



6.1 Runtime

When applying graph partitioning for decomposing a mesh, prior to the decomposition routine the dual
graph of the mesh has to be computed. Subsequently, the decomposition routine computes a decomposition.
If during a numerical simulation the weights change and a certain imbalance occurs, a redecomposition can
be computed based on the prior computed dual graph. Hence, in this setting, the dual graph of a mesh just
has to be computed once and for all.

When decomposing with SFCs, the setting is similar. For each mesh element, the center of gravity and
a corresponding index with respect to some SFC (here we applied the Hilbert curve) has to be computed.
The list of SFC indices has to be sorted, and, based on this sorting, a splitting algorithm states the domain
decomposition. Here, it holds the same as for a decomposition by graph partitioning. When redecomposing,
the sorted list of indices of the mesh elements can be reused, and only the splitting algorithm has to be
rerun.

Computing the dual graph, as well as the computation of the centers of gravity, the computation of SFC
indices, and the reordering are precomputable steps since they do not depend on the number of partitions
into which we aim to decompose.

Table 2 shows execution times of the different phases of the decomposition process of Metis and our
two-constraint algorithm for the cylindric geometry of figure 6 into 128 parts.

Metis SFCs

dual graph: 2.35 sec centers of gravity: 1.3 sec
SFC indices: 2.7 sec
sorting: 0.66 sec

decomposition routine: 12.49 sec two-constraint splitting: 0.1 sec

Table 2: Execution times of the neccessary steps when decomposition the mesh of figure 6 into 128 parts
with Metis and our two-constraint SFC approach. The decompositions are done on a standard laptop.

In general we observed that the two-constraint splitting algorithm performs about 100-200 times faster
than the two-constraint decomposition routine of Metis. Hence, especially for applications with redecompo-
sitions during the execution, the two-constraint decomposition algorithm is an interesting candidate.

6.2 Quality

We decompose the two-constraint problem into 2 to 512 parts. When applying Metis, we choose an imbalance
bound of 1.03 for both weights. Our two-constraint method depends on the parameter σ, however, it is not
evident how to select σ to obtain a meaningful comparison to Metis. We decided to experimentally determine
the minimal σ such that ω1 is also balanced within the bound of 1.03. The results are displayed in figure 7.

Figure 7 shows that to obtain similar balancings, in this example our SFC based approach produces
edge-cuts between 2 and up to 3.5 times as large as those produced by Metis. This ratio depends on the
number of partitions, and, as the right figure shows, with the increase of the number of partitions, σ as well
has to be increased to obtain the same balancing. Equation 32 provides a faint hint for this behavior.

In figure 8, we display the results of a decomposition into 512 parts with varying σ values.
The bahavior of the imbalance of ω1 (that is µ(ω1)) with respect to σ is representative for the method.

Increasing small σ values leads to a fast decrease of µ(ω1) while the increase of large σ values decreases
the imbalance only slightly. In addition, the evolution of µ(ω1) with respect to σ is superposed with a
fluctuation. This results from the fact that a different choice of σ poses differently natured reunification
problems. Even though the initial diameters of the sets in the reunification phase decrease with the increase
of σ, the problems might be harder to solve (or simply, there might be no better reunifications), and the
final imbalance might be larger than those achieved with a smaller σ. However, if σ is increased sufficiently,
µ(ω1) can be kept as small as it is desired in charge of an increased edge-cut.
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Figure 7: Left: the edge-cut of the decompositions provided by Metis and our two-constraint algorithm with
a weight balancing constraint of 1.03. The dotted lines are the results of our two-constraint algorithm for
certain fixed σ values. Right: the σ values that are required for obtaining a balancing of 1.03. The green
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6.3 Further remarks

Further experiments showed that to obtain similar balancings as Metis does the method produces edge-cuts
between 1.5 up to 7 times worse than those produced by Metis, while we achieved these very bad ratios only
by constructing very artificial test scenarios. So far, we do not want to claim that the method works for any
two-constraint decomposition problem, however, we point out that there are problems where the method
applies well.

Furthermore, in general 2-dimensional problems result in a higher edge-cut ratio than 3-dimensional
problems which is a consequence of the fact that the surface of a SFC induced partition grows in
O( d
√
volume of partition) (compare [26]).

7 Conclusion

In this paper, we presented a new two-constraint domain decomposition method based on SFCs. We provided
a test case to experimentally demonstrate the capabilities of the method, and we pointed out that the method
is fast by a reasonable loss of quality in terms of partition surface sizes with respect to two-constraint graph
partitioning as implemented in the Metis software package.

The method requires to solve the REUNIFICATION problem. We showed that this problem is NP-hard,
and we presented a heuristic algorithm for this problem that can be seen as a generalization of the LDM of
Karmarkar and Karp for the interger partitioning problem.

Furthermore, many variants of the present two-constraint algorithm are possible, and one may fine tune
the method to certain problem cases. Since the underlying SFC defines the sorting of the list of tetrahedra
onto which the splitting algorithm acts, the applied SFC plays an important role in posing the splitting
problem. The application of different curves may lead to different results. We also pursued the idea of
constructing problem-specific versions of the Hilbert curve that take the defined weights into account such
that the splitting algorithm performs better than based on the regular Hilbert curve. First results were
promising (we could keep σ small for good balancings), however our computation scheme for these problem-
specific curves is quite expensive and a full decomposition algorithm is very costly, and still produces higher
edge-cuts than graph partitioners.

Moreover, we considered the subset of problems that exhibit a long series of tetrahedra (τi)j≤i≤k in the list
of tetrahedra with a weight ω1(τi) = 0. Here, the decomposition problem can be split into a two-constraint
problem (the τi with i < j and k < i) and a one-constraint problem (τi with j ≤ i ≤ k). This setting
allows, firstly, to solve the two-constraint problem, and, secondly, to solve the one-constraint problem under
consideration of the resulting imbalance of the two-constraint splitting. We achieved satisfying results with
this method.

We state some directions for further research:

• identification of areas of application for the method,

• efficient (approximation?) algorithms for the two-constraint problem,

• integrating randomization into the two-constraint heuristic as a protection against hard instances. An
interesting approach is to perform a first splitting in the splitting phase that does not necessarily
balance perfectly ω1. This splitting could be such that the resulting reunification problem instances
have better solutions.
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