Detecting cliques in CONGEST networks DISC 2018

Artur Czumaj Christian Konrad

18.10.2018

The CONGEST Model of Distributed Computation

CONGEST Model:

- Synchronous communication rounds
- Individual messages along edges of size $\mathrm{O}(\log n)(n=|V|)$
- Local computation is free
- Objective: Minimize runtime $=$ number of communication rounds

Distributed Subgraph Detection Problem

Subgraph Detection Problem:

- If G contains a copy of H then with probability at least $2 / 3$ at least one node outputs 1 ;
- If G does not contain a copy of H then with probability at least $2 / 3$ no node outputs 1 .

This paper: $H=K_{l}$, for some $I \geq 4$ (clique on $/$ vertices)

Distributed Subgraph Detection Problem

Subgraph Detection Problem:

- If G contains a copy of H then with probability at least $2 / 3$ at least one node outputs 1 ;
- If G does not contain a copy of H then with probability at least $2 / 3$ no node outputs 1 .

This paper: $H=K_{l}$, for some $I \geq 4$ (clique on $/$ vertices)

Distributed Subgraph Detection Problem

Subgraph Detection Problem:

- If G contains a copy of H then with probability at least $2 / 3$ at least one node outputs 1 ;
- If G does not contain a copy of H then with probability at least $2 / 3$ no node outputs 1 .

This paper: $H=K_{l}$, for some $I \geq 4$ (clique on $/$ vertices)

Known Results

Trivial Bounds:

- Every subgraph H can be detected in $\mathrm{O}\left(n^{2}\right)$ rounds
- Every clique K_{l} can be detected in $\mathrm{O}(n)$ rounds

Related Works:

- There exists a graph H on $O(I)$ vertices that requires $\Omega\left(n^{2-\frac{1}{l}} / \log n\right)$ rounds [Fischer et al., SPAA 2018]
- K_{3} can be detected in $\tilde{O}(\sqrt{n})$ rounds [Chang et al., SODA 2019] (Breakthrough $\tilde{O}\left(n^{2 / 3}\right)$ rounds by [Izumi, Le Gall, PODC 2017])
- K_{l} detection for $I \geq 4$ requires $\Omega(n / \log n)$ rounds in broadcast CONGESTED-CLIQUE [Drucker et al., PODC 2014]

Related Problems:

- Triangle enumeration: $\tilde{O}\left(n^{1 / 2}\right)$ rounds [Chang et al., SODA 2019]
- Every vertex lists all triangles it is contained in: $\Omega(n / \log n)$ rounds [Izumi, Le Gall, PODC 2017])

Our Results

Main Result:

Theorem: Detecting K_{l} in the CONGEST model requires:

- $\Omega(\sqrt{n} / \log n)$ rounds, if $I \leq \sqrt{n}$, and
- $\Omega(n /(I \log n))$ rounds, if $I>\sqrt{n}$.

Technique:

Two-party communication complexity in vertex partition model

Optimality of our Lower Bound:

There is a two-party communication protocol that detects all cliques in $\mathrm{O}(\sqrt{n})$ rounds.

LBs for CONGEST via Two-party Communication

Two-party Communication Model:

Example: EQUALITY

- Deterministic protocols: $\Theta(N)$ bits communication
- Randomized protocols: $\Theta(\log N)$ bits communication

Set-Disjointness: $f(X, Y)=\operatorname{DISJ}(X, Y)=\bigvee_{i=1}^{N} X_{i} \wedge Y_{i}$
Randomized protocols (constant error): $\Omega(N)$
Reduction: Alice and Bob simulate CONGEST algorithm to solve DisJ

$$
K_{4} \text { detection in CONGEST in } o(\sqrt{n} / \log n) \text { rounds }
$$

$$
\Rightarrow
$$

Set-Disjointness in Two-party communication in $o(N)$ rounds

Technique: Vertex Partition Model

Lower Bounds via the Vertex Partition Model:

Alice's part shared Bob's part

depends on $X \quad$ fixed CUT depends on Y

- Alice and Bob simulate CONGEST alg. for K_{4} detection in r rounds
- Graph construction such that: G contains K_{4} iff $\operatorname{Disj}(X, Y)=1$
- At most $2 \cdot r \cdot|C U T| \cdot \log n=\Omega(N)$ bits exchanged:

$$
r=\Omega\left(\frac{N}{|C U T| \log n}\right) .
$$

Lower Bound Construction

Objective: (Recall: $r=\Omega\left(\frac{N}{\mid \text { CUT } \log n}\right)$)

- Maximize N, the size of the Set-disjointness instance
- Minimize $|C U T|$, the cut between Alice's and Bob's private vertices

K_{4} Gadget:

- If $X_{i}=Y_{i}=1$, then gadget forms a K_{4} and $\operatorname{DISJ}(X, Y)=1$
- Difficulty: Gadget adds 4 edges to cut
- Strategy: Overlapping gadgets

Lower Bound Construction (2)

(1) Random Bipartite Graph: $G_{p}=(A, B, E)$, each edge included with probability $p=\frac{1}{\sqrt{n}}$. This creates many overlapping $K_{2,2} \mathrm{~S}$
(3) Peeling Process: Remove few edges from G_{p} such that $K_{2,2}$ s do not interfere
(Lower Bound Graph: Based on inputs X, Y, Alice and Bob add edges to potentially complete the $K_{2,2} \mathrm{~s}$ to $K_{4} \mathrm{~s}$

Lower Bound Construction (2)

(1) Random Bipartite Graph: $G_{p}=(A, B, E)$, each edge included with probability $p=\frac{1}{\sqrt{n}}$. This creates many overlapping $K_{2,2} \mathrm{~S}$
(2) Peeling Process: Remove few edges from G_{p} such that $K_{2,2} \mathrm{~s}$ do not interfere
(3) Lower Bound Graph: Based on inputs X, Y, Alice and Bob add edges to potentially complete the $K_{2,2}$ s to K_{4} s

Analysis

There are many $K_{2,2} \mathbf{s}$ in G_{p} :

- There are $\binom{n}{2}$ potential copies of $K_{2,2}$
- Probability that one potential $K_{2,2}$ is realized is p^{4}
- Expected number of $K_{2,2}$ is $\binom{n}{2}^{2} \cdot p^{4} \approx n^{2}$ (similar statement holds with high probability).

Constant fraction of pairs $\left(a_{1}, a_{2}\right)$ in at most $5 K_{2,2} \mathbf{s}$:

- Expected number of $K_{2,2}$ that contain vertices $a_{1}, a_{2}:\binom{n}{2} p^{4}=\mathrm{O}(1)$
- Similar statement holds with high probability

Peeling Process:

- Only consider $K_{2,2} s\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ where $a_{1}, a_{2}\left(b_{1}, b_{2}\right)$ are contained in at most $5 K_{2,2} \mathrm{~s}$
- Choose one of these $K_{2,2}$ s greedily and remove interfering $K_{2,2}$ s

Lower Bound: Summary

Summary:

- Construction allows encoding of DisJ instance of size $N=\Omega\left(n^{2}\right)$
- $|C U T|=\mathrm{O}\left(n^{2} \cdot p\right)=\mathrm{O}(n \sqrt{n})$ (with high probability)
- Hence, $r=\Omega\left(\frac{N}{|C U T| \log n}\right)=\Omega\left(\frac{n^{2}}{n \sqrt{n} \log n}\right)=\Omega(\sqrt{n} / \log n)$.

Extension to $K_{l}, l \geq 5$:

- If $I<\sqrt{n}$, we add $I \cdot n=\mathrm{O}(n \sqrt{n})$ edges to CUT \rightarrow LB remains the same
- If $I \geq \sqrt{n}$, the added edges dominate
\rightarrow LB becomes $\frac{n^{2}}{\ln \log n}=\Omega\left(\frac{n}{1 \log n}\right)$

Two-party Protocol for Detecting all Cliques

Report All Cliques:

- Alice and Bob report all cliques containing at most one red/blue vertex without communication
- Focus on cliques that contain
 at least two red or two blue vertices
if $|C U T| \geq n \sqrt{n}$ then
Alice sends all its edges to Bob in $O(\sqrt{n})$ rounds
else
Let $V_{\leq \sqrt{n}}:=$ Alice's vertices that are incident to $\leq \sqrt{n}$ CUT-edges
(1) Detect cliques containing at least one vertex from $V_{\leq \sqrt{n}}$: For each $v \in V_{\leq \sqrt{n}}$, Bob sends induced subgraph of vertices incident to v of Bob's side (at most \sqrt{n} rounds)
(2) Detect cliques that contain at least one vertex from $V_{>\sqrt{n}}$: Alice sends induced subgraph by $V_{>\sqrt{n}}$ to Bob (at most \sqrt{n} rounds)

Two-party Protocol for Detecting all Cliques

Report All Cliques:

- Alice and Bob report all cliques containing at most one red/blue vertex without communication
- Focus on cliques that contain at least two red or two blue vertices

if $|C U T| \geq n \sqrt{n}$ then
Alice sends all its edges to Bob in $\mathrm{O}(\sqrt{n})$ rounds
else
Let $V_{\leq \sqrt{n}}:=$ Alice's vertices that are incident to $\leq \sqrt{n}$ CUT-edges
(1) Detect cliques containing at least one vertex from $V_{\leq \sqrt{n}}$: For each $v \in V_{\leq \sqrt{n}}$, Bob sends induced subgraph of vertices incident to v of Bob's side (at most \sqrt{n} rounds)
(2) Detect cliques that contain at least one vertex from $V_{>\sqrt{n}}$: Alice sends induced subgraph by $V_{>\sqrt{n}}$ to Bob (at most \sqrt{n} rounds)

Conclusion

Summary:

- Detecting $K_{l}(4 \leq I \leq \sqrt{n})$ in CONGEST requires $\Omega(\sqrt{n} / \log n)$ rounds
- Stronger LB not possible in 2-party vertex partition model

Open Problems:

- Is there a stronger LB using different techniques or is there a sublinear rounds algorithm for K_{4} detection?
- Are there non-trivial algorithms/lower bounds for CLIQUE approximation? (our LB does not apply)

Conclusion

Summary:

- Detecting $K_{l}(4 \leq I \leq \sqrt{n})$ in CONGEST requires $\Omega(\sqrt{n} / \log n)$ rounds
- Stronger LB not possible in 2-party vertex partition model

Open Problems:

- Is there a stronger LB using different techniques or is there a sublinear rounds algorithm for K_{4} detection?
- Are there non-trivial algorithms/lower bounds for CLIQUE approximation? (our LB does not apply)

Thank you.

