Detecting cliques in CONGEST networks DISC 2018

Artur Czumaj Christian Konrad

18.10.2018

The CONGEST Model of Distributed Computation

CONGEST Model:

- Synchronous communication rounds
- Individual messages along edges of size $O(\log n)$ (n = |V|)
- Local computation is free
- **Objective:** Minimize *runtime* = number of communication rounds

Distributed Subgraph Detection Problem

Subgraph Detection Problem:

- If G contains a copy of H then with probability at least 2/3 at least one node outputs 1;
- If G does not contain a copy of H then with probability at least 2/3 no node outputs 1.

This paper: $H = K_l$, for some $l \ge 4$ (clique on l vertices)

Distributed Subgraph Detection Problem

Subgraph Detection Problem:

- If G contains a copy of H then with probability at least 2/3 at least one node outputs 1;
- If G does not contain a copy of H then with probability at least 2/3 no node outputs 1.

This paper: $H = K_l$, for some $l \ge 4$ (clique on l vertices)

Distributed Subgraph Detection Problem

Subgraph Detection Problem:

- If G contains a copy of H then with probability at least 2/3 at least one node outputs 1;
- If G does not contain a copy of H then with probability at least 2/3 no node outputs 1.

This paper: $H = K_l$, for some $l \ge 4$ (clique on l vertices)

Trivial Bounds:

- Every subgraph H can be detected in $O(n^2)$ rounds
- Every clique K_l can be detected in O(n) rounds

Related Works:

- There exists a graph H on O(I) vertices that requires $\Omega(n^{2-\frac{1}{I}}/\log n)$ rounds [Fischer et al., SPAA 2018]
- K_3 can be detected in $\tilde{O}(\sqrt{n})$ rounds [Chang et al., SODA 2019] (Breakthrough $\tilde{O}(n^{2/3})$ rounds by [Izumi, Le Gall, PODC 2017])
- K_l detection for l ≥ 4 requires Ω(n/log n) rounds in broadcast CONGESTED-CLIQUE [Drucker et al., PODC 2014]

Related Problems:

- Triangle enumeration: $\tilde{\mathrm{O}}(n^{1/2})$ rounds [Chang et al., SODA 2019]
- Every vertex lists all triangles it is contained in: $\Omega(n/\log n)$ rounds [Izumi, Le Gall, PODC 2017])

Main Result:

Theorem: Detecting K_l in the CONGEST model requires:

- $\Omega(\sqrt{n}/\log n)$ rounds, if $l \leq \sqrt{n}$, and
- $\Omega(n/(l \log n))$ rounds, if $l > \sqrt{n}$.

Technique:

Two-party communication complexity in vertex partition model

Optimality of our Lower Bound:

There is a two-party communication protocol that detects all cliques in ${\rm O}(\sqrt{n})$ rounds.

LBs for CONGEST via Two-party Communication

Two-party Communication Model:

Example: EQUALITY

- Deterministic protocols: $\Theta(N)$ bits communication
- Randomized protocols: $\Theta(\log N)$ bits communication

Set-Disjointness: $f(X, Y) = DISJ(X, Y) = \bigvee_{i=1}^{N} X_i \wedge Y_i$ Randomized protocols (constant error): $\Omega(N)$

Reduction: Alice and Bob simulate CONGEST algorithm to solve $\mathrm{D}\mathrm{ISJ}$

 K_4 detection in CONGEST in $o(\sqrt{n}/\log n)$ rounds \Rightarrow Set-Disjointness in Two-party communication in o(N) rounds

Technique: Vertex Partition Model

Lower Bounds via the Vertex Partition Model:

- Alice and Bob simulate CONGEST alg. for K_4 detection in r rounds
- Graph construction such that: G contains K_4 iff DISJ(X, Y) = 1
- At most $2 \cdot r \cdot |CUT| \cdot \log n = \Omega(N)$ bits exchanged:

$$r = \Omega(\frac{N}{|CUT|\log n}) \; .$$

Lower Bound Construction

Objective: (Recall: $r = \Omega(\frac{N}{|CUT| \log n})$)

- Maximize *N*, the size of the Set-disjointness instance
- Minimize |*CUT*|, the cut between Alice's and Bob's private vertices

K₄ Gadget:

- If $X_i = Y_i = 1$, then gadget forms a K_4 and DISJ(X, Y) = 1
- Difficulty: Gadget adds 4 edges to cut
- Strategy: Overlapping gadgets

Lower Bound Construction (2)

- **Oracle Random Bipartite Graph:** $G_p = (A, B, E)$, each edge included with probability $p = \frac{1}{\sqrt{n}}$. This creates many overlapping $K_{2,2}$ s
- Peeling Process: Remove few edges from G_p such that K_{2,2}s do not interfere
- Lower Bound Graph: Based on inputs X, Y, Alice and Bob add edges to potentially complete the K_{2,2}s to K₄s

Lower Bound Construction (2)

- **Oracle Random Bipartite Graph:** $G_p = (A, B, E)$, each edge included with probability $p = \frac{1}{\sqrt{n}}$. This creates many overlapping $K_{2,2}$ s
- Peeling Process: Remove few edges from G_p such that K_{2,2}s do not interfere
- Lower Bound Graph: Based on inputs X, Y, Alice and Bob add edges to potentially complete the K_{2,2}s to K₄s

Analysis

There are many $K_{2,2}$ s in G_p :

- There are $\binom{n}{2}^2$ potential copies of $K_{2,2}$
- Probability that one potential $K_{2,2}$ is realized is p^4
- Expected number of $K_{2,2}$ s is $\binom{n}{2}^2 \cdot p^4 \approx n^2$ (similar statement holds with high probability).

Constant fraction of pairs (a_1, a_2) in at most 5 $K_{2,2}$ s:

- Expected number of $K_{2,2}$ s that contain vertices a_1, a_2 : $\binom{n}{2}p^4 = O(1)$
- Similar statement holds with high probability

Peeling Process:

- Only consider K_{2,2}s {a₁, a₂, b₁, b₂} where a₁, a₂ (b₁, b₂) are contained in at most 5 K_{2,2}s
- Choose one of these $K_{2,2}$ s greedily and remove interfering $K_{2,2}$ s

Lower Bound: Summary

Summary:

• Construction allows encoding of DISJ instance of size $N = \Omega(n^2)$

•
$$|CUT| = O(n^2 \cdot p) = O(n\sqrt{n})$$
 (with high probability)

• Hence,
$$r = \Omega(\frac{N}{|CUT|\log n}) = \Omega(\frac{n^2}{n\sqrt{n}\log n}) = \Omega(\sqrt{n}/\log n)$$
.

Extension to K_l , $l \ge 5$:

- If $l < \sqrt{n}$, we add $l \cdot n = O(n\sqrt{n})$ edges to CUT \rightarrow LB remains the same
- If $l \ge \sqrt{n}$, the added edges dominate \rightarrow LB becomes $\frac{n^2}{\ln \log n} = \Omega(\frac{n}{\ln \log n})$

Two-party Protocol for Detecting all Cliques

Report All Cliques:

- Alice and Bob report all cliques containing at most one red/blue vertex without communication
- Focus on cliques that contain at least two red or two blue vertices

if $|CUT| \ge n\sqrt{n}$ then

Alice sends all its edges to Bob in $O(\sqrt{n})$ rounds

else

Let $V_{\leq \sqrt{n}} :=$ Alice's vertices that are incident to $\leq \sqrt{n} \ CUT$ -edges

- Obtect cliques containing at least one vertex from V_{≤√n}: For each v ∈ V_{≤√n}, Bob sends induced subgraph of vertices incident to v of Bob's side (at most √n rounds)
- **Oetect cliques that contain at least one vertex from** $V_{>\sqrt{n}}$ **:** Alice sends induced subgraph by $V_{>\sqrt{n}}$ to Bob (at most \sqrt{n} rounds)

Two-party Protocol for Detecting all Cliques

Report All Cliques:

- Alice and Bob report all cliques containing at most one red/blue vertex without communication
- Focus on cliques that contain at least two red or two blue vertices

$v \longrightarrow \leq \sqrt{n}$

if $|CUT| \ge n\sqrt{n}$ then

Alice sends all its edges to Bob in $O(\sqrt{n})$ rounds

else

Let $V_{\leq \sqrt{n}} :=$ Alice's vertices that are incident to $\leq \sqrt{n}~\textit{CUT}\text{-edges}$

- Obtect cliques containing at least one vertex from V_{≤√n}: For each v ∈ V_{≤√n}, Bob sends induced subgraph of vertices incident to v of Bob's side (at most √n rounds)
- **Oetect cliques that contain at least one vertex from** $V_{>\sqrt{n}}$ **:** Alice sends induced subgraph by $V_{>\sqrt{n}}$ to Bob (at most \sqrt{n} rounds)

Conclusion

Summary:

- Detecting K_l $(4 \le l \le \sqrt{n})$ in CONGEST requires $\Omega(\sqrt{n}/\log n)$ rounds
- Stronger LB not possible in 2-party vertex partition model

Open Problems:

- Is there a stronger LB using different techniques or is there a sublinear rounds algorithm for K₄ detection?
- Are there non-trivial algorithms/lower bounds for CLIQUE approximation? (our LB does not apply)

Conclusion

Summary:

- Detecting K_l $(4 \le l \le \sqrt{n})$ in CONGEST requires $\Omega(\sqrt{n}/\log n)$ rounds
- Stronger LB not possible in 2-party vertex partition model

Open Problems:

- Is there a stronger LB using different techniques or is there a sublinear rounds algorithm for K₄ detection?
- Are there non-trivial algorithms/lower bounds for CLIQUE approximation? (our LB does not apply)

Thank you.