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Distributed Vertex Coloring

Input: G =(V,E), n=|V|, max. degree A

The LOCAL Model:
@ Nodes host processors

@ Synchronous communication along edges, individual messages of
unbounded size

@ Local computation is free

@ Running time = maximal number of communication rounds

Vertex Coloring:

e . ="

Chromatic number: x(G

Output: When algorithm terminated, every node knows its color
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Known Results

(A + 1)-coloring:
@ In general graphs: O(log n) rounds [Luby, Siam J. on Comp., 1986]
@ [Kuhn, Wattenhofer, PODC 2006], [Schneider, Wattenhofer, PODC 2008], [Kuhn, SPAA
2009], [Barenboim, Elkin, STOC 2009], [Schneider, Wattenhofer, PODC 2010],
[Barenboim, Elkin, Pettie, Schneider, FOCS 2012], ...

Algorithm with approximation guarantee:
O(y/n)-approx. in O(1) rounds [Barenboim, ICALP 2012]

Research Question:
Which graph classes admit distributed coloring algorithms with better
approximation guarantees?
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Our Main Result

Interval Graphs: Intersection graph of intervals of arbitrary lengths on
the line

2 D;D 3 4 e've

Theorem: (UB) There is a deterministic O(log™ n) rounds distributed
algorithm for coloring interval graphs with approximation factor O(1).

Theorem: (LB) Every distributed O(1)-approximation algorithm for
coloring interval graphs requires Q(log™ n) rounds.
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Simple Class of Coloring Algorithms

Round-based coloring scheme:
In round i do:
@ Every not yet colored node v € V pre-selects itself with probability p;

@ If no neighbor of v pre-selected itself:
v colors itself with color i

© Stop when all nodes are colored

Algorithms implementing this scheme have to determine the p;

Properties:
@ Single bit messages, # rounds = # colors
@ Scheduling in wireless networks [Kesselheim, Vécking, DISC 2010],
[Halldérsson, Mitra, ICALP 2011], [Halldérsson, et al., SODA 2013]
@ Beep model [Cornejo, Kuhn, DISC 2010] (either beep or listen): One round
of algorithm can be implemented in O(log n) rounds in Beep model
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Simple Class of Coloring Algorithms: LB Result

UB 1: There is an algorithm following this scheme that colors any
graph with O(A + log? n) rounds (e.g. unit int. graphs: A = ©(x(G)))
[Kesselheim,, Vécking, DISC 2010]

UB 2: There is an algorithm following this scheme that colors interval
graphs in O(x(G) log n) rounds [Halldérsson et al., SODA 2013]

@ d-inductive-independent graphs can be colored with the previous
scheme in O(dx(G) log n) rounds
@ Interval graphs are 1-inductive independent (=perfect elimination

ordering):
3 5
, O—a b—a
B—x B—
o—=a D a® o—no
1 4 7
We prove:

Lower Bound: There is an interval graph so that any algorithm that
follows the previous scheme requires Q(X(G)log’ﬁ)gn) rounds
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O(1)-approx. in O(log™ n) rounds in LOCAL model

Magnis M. Halldérsson and Christian Konrad Distributed Algorithms for Coloring Interval Graphs



Existing O(log™ n) Independent Set Algorithms

Reduction in LOCAL-model:
Maximal Independent Set algorithm implies (A + 1)-coloring

O(log™ n) Rounds MIS algorithms:

@ Ring [Cole, Vishkin, STOC 1986]
@ Extension to trees and constant degree graphs
@ Bounded-independence Graphs [Schneider, Wattenhofer, PODC 2008]

Definition: A graph G = (V/, E) is of bounded-independence if there
exists a bounding function f(r) so that for each node v € V, the size of
a maximum independent set in the r-neighborhood of v is at most 7(r).

r-Neighborhood: T"(v) ={ue V : d(u,v) <r}.

Important: f is independent of n
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Bounded-independence Graphs

Examples:
e Path/Ring:

@ Unit Interval Graphs:

o Interval-Graphs:

[, )

(n — 1)-claw, not of bounded-independence

We will use: O(log™ n) rounds algorithms to compute:
@ (A + 1)-coloring in constant-degree graph
@ Maximal Independent Set in unit interval graph
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Dominating set D

Magnis M. Halldérsson and Christian Konrad Distributed Algorithms for Coloring Interval Graphs



Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Dominating set D, distance-3-adjacency of D
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Dominating set D, distance-3-adjacency of D, max. degree = O(1)
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

N

Distance-3 coloring of D, e.g. using (A + 1)-coloring algorithm for
bounded-degree graphs (Cole & Vishkin) in O(log* n) rounds
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Color class 1 colors its yet uncolored neighbors
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Color class 2 colors its yet uncolored neighbors
(no conflicts due to distance-3 coloring)
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Color class 3 colors its yet uncolored neighbors
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Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Summary: Given D, in O(log"n) rounds, we obtain an O(1)-
approximation to the coloring problem

Magnis M. Halldérsson and Christian Konrad Distributed Algorithms for Coloring Interval Graphs



Algorithm in the LOCAL model

Goal: Find a dominating set D C V so that:
YveD:|P(v)nD|=0(1).

D implies O(1)-approximation to coloring in O(log™ n) rounds:
@ Find a distance-3 coloring of D, obtain color classes Dy, ..., Do(1)
@ Go through color classes D;, each node v € D; colors its neighbors

Remark: Greedy coloring in interval graphs = constant factor approxima-
tion
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Finding D in interval graph

Strategy:

o Find subgraph Gp C G of proper intervals by exploring
2-neighborhood:

G GrCG
5
[, 0 [k 0 [ ] [, ] [
[, O C O
1 1

Gp is also a unit interval graph
@ Compute maximal independent set / in Gp in O(log™ n) rounds

e Every node v; € / selects the two nodes v}, v? € [, (v;) that
maximizes |[(v;) UT(v}) UT(v?)| (Intervals stretching out to the left
and right as far as possible)

o D= Ui{via Vilaviz}
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Finding D in interval graph

Strategy:

o Find subgraph Gp C G of proper intervals by exploring
2-neighborhood:

G GrCG
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Gp is also a unit interval graph
@ Compute maximal independent set / in Gp in O(log™ n) rounds

e Every node v; € / selects the two nodes v}, v? € [, (v;) that
maximizes |[(v;) UT(v}) UT(v?)| (Intervals stretching out to the left
and right as far as possible)

o D= Ui{via Vilaviz}
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D has the desired properties

D is a dominating set in G:

@ Two adjacent nodes u, v € | are at distance at most 3

[ |
r—  [[ee—

o Intervals reaching out furthest to the left/right bridge this gap

Property: Vv e D: |[3(v)ND|=0(1).

e Maximal degree in G|p is 7

o At most 73 nodes in 3(v) for any v € D.
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Algorithm is optimal: Reduction to Linial’s ring coloring lower bound
[Linial, SIAM Journal on Computing, 1992]

Main idea:
Use dominating set D that has a distance-3-coloring using O(1) colors

@ Algorithm relies heavily on properties of interval graphs
@ This allows the application of existing O(log™ n) algorithms

@ However, difficult to generalise

Open Questions:

e Can a similar result be obtained for disc graphs? (we can do
O(1)-approximation in O(log n) rounds)
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Lower Bound for Round-based Coloring Scheme
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Round-based Coloring Scheme

Round-based coloring scheme: (round /)

@ Every not yet colored node v € V pre-selects itself with probability p;

@ If no neighbor of v pre-selected itself:
v colors itself with color i

© Stop when all nodes are colored

Hard Instance with chrom. number: x(G) = ©(log?(n)/ loglog(n))

[, ]

log(n) H ol
[, O
e e

log(n) ... log(n) ...
e e
O] O] i O]

log(n) H H H H ...log™2(n) ...
O] O] i O]

Theta( log(n) / log log(n) ) Layers
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Hard Instance

[, ]

log(n) H 1
[, ]
— —

log(n) ... log(n) ...
———n b——
O O—0 o—a ob—a
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Choice of Probabilities:
o If p; > x(G)~! (e.g. pi =log(n)): no progress as too many nodes
pre-selected and they exclude each other
o If pi < x(G)! (e.g. p;j = log*(n)): not enough progress as too few
nodes pre-selected
— Best progress if p; = ©(x(G)™1)
We prove:
o Q(x(G)) iterations necessary to “eliminate” one layer

@ Then, elimination of all layers: Q(X(G)Iolglign).
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Summary: Round-based Coloring Scheme
o Lower Bound tight up to a loglog(n) factor

@ Seems like log(n) factor has to be paid for non-trivial graph classes:

e UB 1: There is an algorithm following this scheme that colors any
graph with O(A + log? n) rounds

e UB 2: There is an algorithm following this scheme that colors
interval graphs in O(x(G) log n) rounds
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Thanks
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