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Streaming Algorithms for Graph Problems

Insertion-only Streams (1999 -)

Input stream: Sequence of edges of input graph G = (V ,E ) with
n = |V | in arbitrary order

S = e2e1e4e3

Goal: Few passes (preferably one) algorithms with space o(n2)

Matchings, independent sets, cuts, graph sparsifiers, random walks,
bipartiteness testing, counting triangles/subgraphs, . . .

Dynamic/Turnstile Streams (2012 -)

Input stream: Sequence of edge insertions/deletions, arbitrary order

S = e4e3e5e5e2e6e2e2e1e6
(arbitrary length)

Goal: Few passes (preferably one) algorithm with space o(n2)
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Matching in Insertion-only Streams

Greedy Matching Algorithm

Insert e into initially empty matching M if M ∪ {e} is a matching

One-pass 1
2 -approximation streaming algorithm with space O(n log n)

Most Studied Graph Problem in the Streaming Model

Unweighted/weighted, one-pass/multi-pass, adversarial arrival
order/random order

[Feigenbaum et al., Theo. Comp. Sci. 2005] [McGregor, APPROX 2005], [Ahn,

Guha, ICALP 2011], [Eggert et al., Algorithmica 2012], [Goel et al., SODA 2012],
[Kapralov, SODA 2013] [Zelke, Algorithmica 2012], [Epstein et al., STACS 2010],
[Crouch, Stubbs, APPROX 2014], [Konrad et al., APPROX 2012], [Kapralov et al.,

SODA 2014], [Kapralov et al., SODA 2014], [Esfandiari et al., SODA 2015], . . .
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Dynamic/Turnstile Streams

How well can we do if edge deletions are allowed?

(Open question from Bertinoro workshop 2014 on sub-linear algorithms)

Known Results on Dynamic Graph Streams

[Ahn, Guha, McGregor, SODA 2012] Connectivity, bipartiteness, const.
factor minimum weight spanning tree in O(n log n) space

(1 + ε)-approximate weighted matching with O(n1+1/p poly ε−1)
space and O(p · ε−2 · log ε−1) passes

[Ahn, Guha, McGregor, APPROX 2013],[Kapralov, Woodruff, PODC 2014],
[Kapralov et al., FOCS 2014] Sparsifiers and spanners
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Our Results

Upper Bound: For every 0 ≤ ε ≤ 1: One-pass
O(nε)-approximation streaming algorithm with space Õ(n2−2ε)

Lower Bound: For every 0 ≤ ε ≤ 1: Every one-pass
O(nε)-approximation streaming algorithm requires space Ω(n3/2−4ε)
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Upper Bound
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Main Algorithmic Technique: Linear Sketches

Linear Sketches and Turnstile Streams

Turnstile stream: Updates to characteristic vector of edges

x vector of integers of size
(|V |

2

)
, initially x = (0, . . . , 0)

Edge insertion ei : x ← x + (0, . . . , 0, 1, 0 . . . , 0) (ith unit vector)
Edge deletion ei : x ← x − (0, . . . , 0, 1, 0 . . . , 0)

Sketching algorithm:
1 Choose sampling matrix A from dist. of matrices (randomized)
2 Compute sketch y = A · x (deterministic) while processing the stream
3 Post-processing: Compute output from sketch y

Linear Sketches are Universal

All known turnstile algorithms are linear sketches

[Li, Nguyen, Woodruff, STOC 2014] For every turnstile alg., there is one
that behaves the same and can be implemented as linear sketch

Size of sketch at most log-factor larger than space of original alg.
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Upper Bound

L0-sampling

Given vector x , sample from non-zero coordinates u.a.r.

[Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm
with space O(log2(n) log 1

δ ) that performs L0-sampling with δ error

Algorithm (suppose perfect matching present)

Input: Bipartite G = (A,B,E ) with |A| = |B| = n

Let A′ ⊆ A u.a.r. subset of nodes of size n1−ε

For every a ∈ A′ : Sample C · n1−ε log n times
from set of incident edges

Output largest matching M induced by sampled edges

Lemma
∀a ∈ A′ : at least min{degG (a), n1−ε} incident edges sampled w.h.p.
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[Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm
with space O(log2(n) log 1

δ ) that performs L0-sampling with δ error

Algorithm (suppose perfect matching present)

Input: Bipartite G = (A,B,E ) with |A| = |B| = n

Let A′ ⊆ A u.a.r. subset of nodes of size n1−ε

For every a ∈ A′ : Sample C · n1−ε log n times
from set of incident edges

Output largest matching M induced by sampled edges

sampled edges
Lemma
∀a ∈ A′ : at least min{degG (a), n1−ε} incident edges sampled w.h.p.

Christian Konrad Maximum Matching in Turnstile Streams 8 / 15



Upper Bound

L0-sampling

Given vector x , sample from non-zero coordinates u.a.r.
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Upper Bound

L0-sampling

Given vector x , sample from non-zero coordinates u.a.r.

[Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm
with space O(log2(n) log 1

δ ) that performs L0-sampling with δ error

Algorithm (suppose perfect matching present)

Input: Bipartite G = (A,B,E ) with |A| = |B| = n

Let A′ ⊆ A u.a.r. subset of nodes of size n1−ε

For every a ∈ A′ : Sample C · n1−ε log n times
from set of incident edges

Output largest matching M induced by sampled edges

Space Requirements: Õ(n2−2ε)

Lemma
∀a ∈ A′ : at least min{degG (a), n1−ε} incident edges sampled w.h.p.
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Upper Bound (2)

Let M∗ be a maximum matching in G , then

E |M∗ ∩ G [A′ ∪ B]| = |M∗|/nε

Lemma We find a 1/2-approximation in graph G [A′ ∪ B]

Proof Idea

1. Nodes A1 ⊆ A of degree at most n1−ε:

Graph G [A1 ∪ B] entirely sampled

Let M1 be a maximum matching in G [A1 ∪ B]

2. Nodes A2 = A \ A1 of degree at least n1−ε:

Hall’s theorem: All A2 vertices can be matched in graph G [A2 ∪ B]

3. Emax{M1,M2} ≥ E |M∗ ∩ G [A′ ∪ B]|/2
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Lower Bound
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LBs via Simultaneous Communication Complexity

Simultaneous Communication Protocols

G1 G2 G3 G4 Gp

M1 M2 M3 M4 Mp

Every party Pi holds a subgraph Gi = (V ,Ei ) and Ei ⊆ E

Every party sends message Mi to referee

Referee computes output as a function of the messages

Turnstile Algorithm → Linear sketch → Sim. Communication protocol
(space s) (sketch size Õ(s)) (longest message Õ(s))

Lemma
LB on size of any message Mi is LB on space of any turnstile algorithm
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Hard Instance Construction

Global View

Perfect matching M in
bipartite graph G = (A,B,E )
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Hard Instance Construction

Global View

Each party should equally contribute
to large global matching

M = M1 ∪M2 ∪ · · · ∪Mp
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Hard Instance Construction

Global View

Matching Mi should be induced:
No alternative edges between
A(Mi ) and B(Mi )

alternative edges

induced matching
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Hard Instance Construction

Local View
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Hard Instance Construction

Local View

Vertex groups interconnected
with perfect matchings

All perfect matchings are induced

By symmetry, Mi cannot be
identified

Ruzsa-Szemerédi Graphs: Edge set can be partitioned into large induced
matchings
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Hard Instance Construction

Global View

p perfect matchings between
every pair of vertex groups

p � q
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Summary: Lower Bound

Theorem For every 0 ≤ ε ≤ 1, every one-pass O(nε)-approximation
streaming algorithm requires space Ω(n3/2−4ε).

→ First lower bound for graph problems in the turnstile model

Christian Konrad Maximum Matching in Turnstile Streams 13 / 15



Summary and Conclusion

Our Result

In order to compute a nε-approximation to the maximum matching
problem in the one-pass turnstile streaming model,

space Ω(n3/2−4ε) is required, and

space Õ(n2−2ε) is sufficient.

Independent Results

[Assadi et al. arXiv 2015] Right answer: n2−3ε (UB and LB)

[Chitnis et al. arXiv 2015] Upper Bound: n2−3ε

Open Problems

Particular graph classes?

Matching size?
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Thank you.
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